Relaxed support vector regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-018-2847-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Chien-Ming & Lee, Yuh-Jye & Lin, Dennis K.J. & Huang, Su-Yun, 2007. "Model selection for support vector machines via uniform design," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 335-346, September.
- Onur Şeref & Wanpracha Chaovalitwongse & J. Brooks, 2014. "Relaxing support vectors for classification," Annals of Operations Research, Springer, vol. 216(1), pages 229-255, May.
- Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
- Panagopoulos, Orestis P. & Pappu, Vijay & Xanthopoulos, Petros & Pardalos, Panos M., 2016. "Constrained subspace classifier for high dimensional datasets," Omega, Elsevier, vol. 59(PA), pages 40-46.
- Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
- Claudio Cifarelli & Mario R. Guarracino & Onur Seref & Salvatore Cuciniello & Panos M. Pardalos, 2007. "Incremental Classification with Generalized Eigenvalues," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 205-219, September.
- Petros Xanthopoulos & Mario Guarracino & Panos Pardalos, 2014. "Robust generalized eigenvalue classifier with ellipsoidal uncertainty," Annals of Operations Research, Springer, vol. 216(1), pages 327-342, May.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mike G. Tsionas, 2021. "Multi-criteria optimization in regression," Annals of Operations Research, Springer, vol. 306(1), pages 7-25, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
- Narayan, Seema & Smyth, Russell, 2015.
"The financial econometrics of price discovery and predictability,"
International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
- Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
- JinXing Che & YouLong Yang, 2017. "Stochastic correlation coefficient ensembles for variable selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1721-1742, July.
- Fakhri J. Hasanov & Muhammad Javid & Frederick L. Joutz, 2022.
"Saudi Non-Oil Exports before and after COVID-19: Historical Impacts of Determinants and Scenario Analysis,"
Sustainability, MDPI, vol. 14(4), pages 1-38, February.
- Fakhri Hasanov & Fred Joutz & Muhammad Javid, 2021. "Saudi Non-oil Exports Before and After COVID-19: Historical Impacts of Determinants and Scenario Analysis," Discussion Papers ks--2021-dp09, King Abdullah Petroleum Studies and Research Center.
- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
- Liang, Chong & Schienle, Melanie, 2019.
"Determination of vector error correction models in high dimensions,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
- Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Working Paper Series in Economics 124, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Xuan Liu & Jianbao Chen, 2021. "Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
- Krüger, Jens & Ruths Sion, Sebastian, 2019. "Improving oil price forecasts by sparse VAR methods," Darmstadt Discussion Papers in Economics 237, Darmstadt University of Technology, Department of Law and Economics.
- Onur Şeref & Talayeh Razzaghi & Petros Xanthopoulos, 2017. "Weighted relaxed support vector machines," Annals of Operations Research, Springer, vol. 249(1), pages 235-271, February.
- Mai Dao & Min Wang & Souparno Ghosh & Keying Ye, 2022. "Bayesian variable selection and estimation in quantile regression using a quantile-specific prior," Computational Statistics, Springer, vol. 37(3), pages 1339-1368, July.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020.
"Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
- Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2019. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model," Jena Economics Research Papers 2019-006, Friedrich-Schiller-University Jena.
- Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
- Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2012.
"Sampling error and double shrinkage estimation of minimum variance portfolios,"
Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2011. "Sampling error and double shrinkage estimation of minimum variance portfolios," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bertrand Candelon & Christophe Hurlin & Sessi Tokpavi, 2012. "Sampling Error and Double Shrinkage Estimation of Minimum Variance Portfolios," Post-Print hal-01385835, HAL.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
More about this item
Keywords
Regression; Relaxed support vector regression; Outliers; Relaxed support vector machines; Support vector regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:276:y:2019:i:1:d:10.1007_s10479-018-2847-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.