Solving the capacitated clustering problem with variable neighborhood search
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-017-2601-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Duarte, Abraham & Marti, Rafael, 2007. "Tabu search and GRASP for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 178(1), pages 71-84, April.
- Anna Martínez-Gavara & Vicente Campos & Micael Gallego & Manuel Laguna & Rafael Martí, 2015. "Tabu search and GRASP for the capacitated clustering problem," Computational Optimization and Applications, Springer, vol. 62(2), pages 589-607, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lili Wang & Min Li & Guanbin Kong & Haiwen Xu, 2024. "Joint decision-making for divisional seru scheduling and worker assignment considering process sequence constraints," Annals of Operations Research, Springer, vol. 338(2), pages 1157-1185, July.
- Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
- Vesna Radonjić Ɖogatović & Marko Ɖogatović & Milorad Stanojević & Nenad Mladenović, 2020. "Revenue maximization of Internet of things provider using variable neighbourhood search," Journal of Global Optimization, Springer, vol. 78(2), pages 375-396, October.
- Zheng Wang & Wei Xu & Xiangpei Hu & Yong Wang, 2022. "Inventory allocation to robotic mobile-rack and picker-to-part warehouses at minimum order-splitting and replenishment costs," Annals of Operations Research, Springer, vol. 316(1), pages 467-491, September.
- Zhiyuan Yuan & Jie Gao, 2022. "Dynamic Uncertainty Study of Multi-Center Location and Route Optimization for Medicine Logistics Company," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Qing & Benlic, Una & Wu, Qinghua & Hao, Jin-Kao, 2019. "Heuristic search to the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 464-487.
- Rafael Martí & Abraham Duarte & Manuel Laguna, 2009. "Advanced Scatter Search for the Max-Cut Problem," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 26-38, February.
- Napoletano, Antonio & Martínez-Gavara, Anna & Festa, Paola & Pastore, Tommaso & Martí, Rafael, 2019. "Heuristics for the Constrained Incremental Graph Drawing Problem," European Journal of Operational Research, Elsevier, vol. 274(2), pages 710-729.
- Parreño, Francisco & Álvarez-Valdés, Ramón & Martí, Rafael, 2021. "Measuring diversity. A review and an empirical analysis," European Journal of Operational Research, Elsevier, vol. 289(2), pages 515-532.
- Bahram Alidaee & Haibo Wang, 2017. "A note on heuristic approach based on UBQP formulation of the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 102-110, January.
- Martí, Rafael & Gallego, Micael & Duarte, Abraham, 2010. "A branch and bound algorithm for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 200(1), pages 36-44, January.
- Fred Glover & Gary Kochenberger & Weihong Xie & Jianbin Luo, 2019. "Diversification methods for zero-one optimization," Journal of Heuristics, Springer, vol. 25(4), pages 643-671, October.
- Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
- Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
- Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
- Geiza Silva & André Leite & Raydonal Ospina & Víctor Leiva & Jorge Figueroa-Zúñiga & Cecilia Castro, 2023. "Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem," Mathematics, MDPI, vol. 11(14), pages 1-11, July.
- Wu, Qinghua & Hao, Jin-Kao, 2013. "A hybrid metaheuristic method for the Maximum Diversity Problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 452-464.
- Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
- Daniel Porumbel & Jin-Kao Hao & Fred Glover, 2011. "A simple and effective algorithm for the MaxMin diversity problem," Annals of Operations Research, Springer, vol. 186(1), pages 275-293, June.
- Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
- Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
- R Aringhieri & R Cordone, 2011. "Comparing local search metaheuristics for the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 266-280, February.
- Zheng Wang & Wei Xu & Xiangpei Hu & Yong Wang, 2022. "Inventory allocation to robotic mobile-rack and picker-to-part warehouses at minimum order-splitting and replenishment costs," Annals of Operations Research, Springer, vol. 316(1), pages 467-491, September.
- Xi Chen & Zhiping Fan & Zhiwu Li & Xueliang Han & Xiao Zhang & Haochen Jia, 2015. "A two-stage method for member selection of emergency medical service," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 871-891, November.
- Pushak, Yasha & Hare, Warren & Lucet, Yves, 2016. "Multiple-path selection for new highway alignments using discrete algorithms," European Journal of Operational Research, Elsevier, vol. 248(2), pages 415-427.
More about this item
Keywords
Optimization; Clustering; Heuristic; Local search;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:272:y:2019:i:1:d:10.1007_s10479-017-2601-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.