IDEAS home Printed from https://ideas.repec.org/a/ids/eujine/v1y2007i4p370-390.html
   My bibliography  Save this article

A Lagrangian Relaxation approach for production planning with demand uncertainty

Author

Listed:
  • Haoxun Chen

Abstract

A production planning problem with stochastic demands is considered in this paper. The problem is to determine over a given time horizon the production quantity of each intermediate/final product at each facility of finite capacity so that a system-wide total cost is minimised while meeting given service level requirements for the final products. After reformulating the stochastic decision problem as a multiitem, multistage capacitated lot-sizing problem with a non-linear cost function using deterministic equivalence, it is solved by using a Lagrangian Relaxation (LR) approach enhanced with a local search method based on a modified simplex algorithm. Numerical experiments show that the approach can find high quality near-optimal solutions for randomly generated problems of realistic sizes in a computation time much shorter than that of an exact algorithm. [Received on 2 February 2007; Revised 28 May 2007; Accepted 7 June 2007]

Suggested Citation

  • Haoxun Chen, 2007. "A Lagrangian Relaxation approach for production planning with demand uncertainty," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 1(4), pages 370-390.
  • Handle: RePEc:ids:eujine:v:1:y:2007:i:4:p:370-390
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=15390
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. CĂ©line Gicquel & Jianqiang Cheng, 2018. "A joint chance-constrained programming approach for the single-item capacitated lot-sizing problem with stochastic demand," Annals of Operations Research, Springer, vol. 264(1), pages 123-155, May.
    2. Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:eujine:v:1:y:2007:i:4:p:370-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=210 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.