Classifying readmissions to a cardiac intensive care unit
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-016-2350-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
- Yazan Roumani & Jerrold May & David Strum & Luis Vargas, 2013. "Classifying highly imbalanced ICU data," Health Care Management Science, Springer, vol. 16(2), pages 119-128, June.
- Shuchun Wang & Wei Jiang & Kwok-Leung Tsui, 2010. "Adjusted support vector machines based on a new loss function," Annals of Operations Research, Springer, vol. 174(1), pages 83-101, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
- Talayeh Razzaghi & Ilya Safro & Joseph Ewing & Ehsan Sadrfaridpour & John D. Scott, 2019. "Predictive models for bariatric surgery risks with imbalanced medical datasets," Annals of Operations Research, Springer, vol. 280(1), pages 1-18, September.
- Yazan F. Roumani, 2023. "Sports analytics in the NFL: classifying the winner of the superbowl," Annals of Operations Research, Springer, vol. 325(1), pages 715-730, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
- Kyungsik Lee & Norman Kim & Myong Jeong, 2014. "The sparse signomial classification and regression model," Annals of Operations Research, Springer, vol. 216(1), pages 257-286, May.
- Chih-Hao Wen & Ping-Yu Hsu & Ming-Shien Cheng, 2017. "Applying intelligent methods in detecting maritime smuggling," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 573-599, August.
- Tjeerd M. Boonman & Jan P. A. M. Jacobs & Gerard H. Kuper & Alberto Romero, 2019.
"Early Warning Systems for Currency Crises with Real-Time Data,"
Open Economies Review, Springer, vol. 30(4), pages 813-835, September.
- Tjeerd M. Boonman & Jan P.A.M. Jacobs & Gerard H. Kuper & Alberto Romero, 2017. "Early Warning Systems for Currency Crises with Real-Time Data," CIRANO Working Papers 2017s-18, CIRANO.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Hossein Dastkhan, 2021. "Network‐based early warning system to predict financial crisis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 594-616, January.
- Ni Zhan, 2021. "Where does the Stimulus go? Deep Generative Model for Commercial Banking Deposits," Papers 2101.09230, arXiv.org.
- Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
- Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
- Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
- Maurizio Bovi & Roy Cerqueti, 2016. "Forecasting macroeconomic fundamentals in economic crises," Annals of Operations Research, Springer, vol. 247(2), pages 451-469, December.
- Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
- Shuguang He & Wei Jiang & Houtao Deng, 2018. "A distance-based control chart for monitoring multivariate processes using support vector machines," Annals of Operations Research, Springer, vol. 263(1), pages 191-207, April.
- Muhammad Iqbal & Hadri Kusuma & Sunaryati Sunaryati, 2022. "Vulnerability of Islamic banking in ASEAN," Islamic Economic Studies, Emerald Group Publishing Limited, vol. 29(2), pages 159-168, May.
- Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018.
"Short term prediction of extreme returns based on the recurrence interval analysis,"
Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
- Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Short term prediction of extreme returns based on the recurrence interval analysis," Papers 1610.08230, arXiv.org.
- Ivana Marjanoviæ & Milan Markoviæ, 2019. "Determinants of currency crises in the Republic of Serbia," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 191-212.
- Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
- Talayeh Razzaghi & Ilya Safro & Joseph Ewing & Ehsan Sadrfaridpour & John D. Scott, 2019. "Predictive models for bariatric surgery risks with imbalanced medical datasets," Annals of Operations Research, Springer, vol. 280(1), pages 1-18, September.
More about this item
Keywords
Imbalanced data; Data mining; Intensive care unit; Readmission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-016-2350-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.