IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v263y2018i1d10.1007_s10479-016-2350-x.html
   My bibliography  Save this article

Classifying readmissions to a cardiac intensive care unit

Author

Listed:
  • Yazan F. Roumani

    (Oakland University)

  • Yaman Roumani

    (Eastern Michigan University)

  • Joseph K. Nwankpa

    (University of Texas Rio Grande Valley)

  • Mohan Tanniru

    (Oakland University)

Abstract

Research has associated intensive care unit (ICU) readmissions with increased risk of morbidity and mortality. Readmitted patients are also exposed to complications as they are transferred between hospital units. Moreover, due to their unexpected nature, readmissions increase ICU costs and the complexity of managing ICUs. Existing studies on ICU readmissions have mainly used logistic regression for identifying patients who are more likely to be readmitted. However, such studies do not account for the imbalanced nature of the data where the class of interest (readmitted patients) is the minority group. This paper empirically compares three approaches for handling the imbalanced ICU readmissions data: misclassification cost ratio, synthetic minority oversampling technique (SMOTE), and random under-sampling. We used three classification techniques for identifying patients who are more likely to be readmitted to the ICU within the same hospital stay: support vector machines, C5.0, and logistic regression. We evaluated the classification performance of the three methods using recall, specificity, accuracy, F-measure, G-mean, confusion entropy, and area under the receiver operating characteristic curve. Our results showed that SMOTE is the best approach for addressing the imbalanced nature of the data. The sensitivity analysis identified prolonged ventilation, renal failure, and pneumonia as the top three predictors of ICU readmissions. Our findings can be used to develop a decision support tool to help ICU clinicians and administrators in identifying patients who are more likely to be readmitted and hence provide the patients with the appropriate care to minimize their risk of readmission.

Suggested Citation

  • Yazan F. Roumani & Yaman Roumani & Joseph K. Nwankpa & Mohan Tanniru, 2018. "Classifying readmissions to a cardiac intensive care unit," Annals of Operations Research, Springer, vol. 263(1), pages 429-451, April.
  • Handle: RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-016-2350-x
    DOI: 10.1007/s10479-016-2350-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2350-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2350-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    2. Yazan Roumani & Jerrold May & David Strum & Luis Vargas, 2013. "Classifying highly imbalanced ICU data," Health Care Management Science, Springer, vol. 16(2), pages 119-128, June.
    3. Shuchun Wang & Wei Jiang & Kwok-Leung Tsui, 2010. "Adjusted support vector machines based on a new loss function," Annals of Operations Research, Springer, vol. 174(1), pages 83-101, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    2. Talayeh Razzaghi & Ilya Safro & Joseph Ewing & Ehsan Sadrfaridpour & John D. Scott, 2019. "Predictive models for bariatric surgery risks with imbalanced medical datasets," Annals of Operations Research, Springer, vol. 280(1), pages 1-18, September.
    3. Yazan F. Roumani, 2023. "Sports analytics in the NFL: classifying the winner of the superbowl," Annals of Operations Research, Springer, vol. 325(1), pages 715-730, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
    2. Kyungsik Lee & Norman Kim & Myong Jeong, 2014. "The sparse signomial classification and regression model," Annals of Operations Research, Springer, vol. 216(1), pages 257-286, May.
    3. Chih-Hao Wen & Ping-Yu Hsu & Ming-Shien Cheng, 2017. "Applying intelligent methods in detecting maritime smuggling," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 573-599, August.
    4. Tjeerd M. Boonman & Jan P. A. M. Jacobs & Gerard H. Kuper & Alberto Romero, 2019. "Early Warning Systems for Currency Crises with Real-Time Data," Open Economies Review, Springer, vol. 30(4), pages 813-835, September.
    5. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    6. Hossein Dastkhan, 2021. "Network‐based early warning system to predict financial crisis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 594-616, January.
    7. Ni Zhan, 2021. "Where does the Stimulus go? Deep Generative Model for Commercial Banking Deposits," Papers 2101.09230, arXiv.org.
    8. Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
    9. Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
    10. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    11. Maurizio Bovi & Roy Cerqueti, 2016. "Forecasting macroeconomic fundamentals in economic crises," Annals of Operations Research, Springer, vol. 247(2), pages 451-469, December.
    12. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    13. Shuguang He & Wei Jiang & Houtao Deng, 2018. "A distance-based control chart for monitoring multivariate processes using support vector machines," Annals of Operations Research, Springer, vol. 263(1), pages 191-207, April.
    14. Muhammad Iqbal & Hadri Kusuma & Sunaryati Sunaryati, 2022. "Vulnerability of Islamic banking in ASEAN," Islamic Economic Studies, Emerald Group Publishing Limited, vol. 29(2), pages 159-168, May.
    15. Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018. "Short term prediction of extreme returns based on the recurrence interval analysis," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
    16. Ivana Marjanoviæ & Milan Markoviæ, 2019. "Determinants of currency crises in the Republic of Serbia," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 191-212.
    17. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    18. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    20. Talayeh Razzaghi & Ilya Safro & Joseph Ewing & Ehsan Sadrfaridpour & John D. Scott, 2019. "Predictive models for bariatric surgery risks with imbalanced medical datasets," Annals of Operations Research, Springer, vol. 280(1), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-016-2350-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.