IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v216y2014i1p257-28610.1007-s10479-012-1198-y.html
   My bibliography  Save this article

The sparse signomial classification and regression model

Author

Listed:
  • Kyungsik Lee
  • Norman Kim
  • Myong Jeong

Abstract

Kernel-based methods (KBMs) such as support vector machines (SVMs) are popular data mining tools for solving classification and regression problems. Due to their high prediction accuracy, KBMs have been successfully used in various fields. However, KBMs have three major drawbacks. First, it is not easy to obtain an explicit description of the discrimination (or regression) function in the original input space and to make a variable selection decision in the input space. Second, depending on the magnitude and numeric range of the given data points, the resulting kernel matrices may be ill-conditioned, with the possibility that the learning algorithms will suffer from numerical instability. Although data scaling can generally be applied to deal with this problem and related issues, it may not always be effective. Third, the selection of an appropriate kernel type and its parameters can be a complex undertaking, with the choice greatly affecting the performance of the resulting functions. To overcome these drawbacks, we present here the sparse signomial classification and regression (SSCR) model. SSCR seeks a sparse signomial function by solving a linear program to minimize the weighted sum of the ℓ 1 -norm of the coefficient vector of the function and the ℓ 1 -norm of violation (or loss) caused by the function. SSCR employs the signomial function in the original variables and can therefore explore the nonlinearity in the data. SSCR is also less sensitive to numerical values or numeric ranges of the given data and gives a sparse explicit description of the resulting function in the original input space, which will be useful for the interpretation purpose in terms of which original input variables and/or interaction terms are more meaningful than others. We also present column generation techniques to select important signomial terms in the classification and regression processes and explore a number of theoretical properties of the proposed formulation. Computational studies demonstrate that SSCR is at the very least competitive and can even perform better compared to other widely used learning methods for classification and regression. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Kyungsik Lee & Norman Kim & Myong Jeong, 2014. "The sparse signomial classification and regression model," Annals of Operations Research, Springer, vol. 216(1), pages 257-286, May.
  • Handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:257-286:10.1007/s10479-012-1198-y
    DOI: 10.1007/s10479-012-1198-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1198-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1198-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuchun Wang & Wei Jiang & Kwok-Leung Tsui, 2010. "Adjusted support vector machines based on a new loss function," Annals of Operations Research, Springer, vol. 174(1), pages 83-101, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.
    2. Sangheum Hwang & Myong K. Jeong, 2018. "Robust relevance vector machine for classification with variational inference," Annals of Operations Research, Springer, vol. 263(1), pages 21-43, April.
    3. Kyoungmi Hwang & Dohyun Kim & Kyungsik Lee & Chungmok Lee & Sungsoo Park, 2017. "Embedded variable selection method using signomial classification," Annals of Operations Research, Springer, vol. 254(1), pages 89-109, July.
    4. Kyoungmi Hwang & Kyungsik Lee & Sungsoo Park, 2017. "Variable selection methods for multi-class classification using signomial function," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1117-1130, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuguang He & Wei Jiang & Houtao Deng, 2018. "A distance-based control chart for monitoring multivariate processes using support vector machines," Annals of Operations Research, Springer, vol. 263(1), pages 191-207, April.
    2. Yazan F. Roumani & Yaman Roumani & Joseph K. Nwankpa & Mohan Tanniru, 2018. "Classifying readmissions to a cardiac intensive care unit," Annals of Operations Research, Springer, vol. 263(1), pages 429-451, April.
    3. Pablo Aparicio-Ruiz & Elena Barbadilla-Martín & José Guadix & Pablo Cortés, 2021. "KNN and adaptive comfort applied in decision making for HVAC systems," Annals of Operations Research, Springer, vol. 303(1), pages 217-231, August.
    4. Ayşegül Aşkan & Serpil Sayın, 2014. "SVM classification for imbalanced data sets using a multiobjective optimization framework," Annals of Operations Research, Springer, vol. 216(1), pages 191-203, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:257-286:10.1007/s10479-012-1198-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.