IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v16y2013i2p119-128.html
   My bibliography  Save this article

Classifying highly imbalanced ICU data

Author

Listed:
  • Yazan Roumani
  • Jerrold May
  • David Strum
  • Luis Vargas

Abstract

Highly imbalanced data sets are those where the class of interest is rare. In this paper, we compare the performance of several common data mining methods, logistic regression, discriminant analysis, Classification and Regression Tree (CART) models, C5, and Support Vector Machines (SVM) in predicting the discharge status (alive or deceased, with “deceased” being the class of interest) of patients from an Intensive Care Unit (ICU). Using a variety of misclassification cost ratio (MCR) values and using specificity, recall, precision, the F-measure, and confusion entropy (CEN) as criteria for evaluating each method’s performance, C5 and SVM performed better than the other methods. At a MCR of 100, C5 had the highest recall and SVM the highest specificity and lowest CEN. We also used Hand’s measure to compare the five methods. According to Hand’s measure, logistic regression performed the best. This article makes several contributions. We show how the use of MCR for analyzing imbalanced medical data significantly improves the method’s classification performance. We also found that the F-measure and precision did not improve as the MCR was increased. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Yazan Roumani & Jerrold May & David Strum & Luis Vargas, 2013. "Classifying highly imbalanced ICU data," Health Care Management Science, Springer, vol. 16(2), pages 119-128, June.
  • Handle: RePEc:kap:hcarem:v:16:y:2013:i:2:p:119-128
    DOI: 10.1007/s10729-012-9216-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-012-9216-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-012-9216-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yazan F. Roumani & Yaman Roumani & Joseph K. Nwankpa & Mohan Tanniru, 2018. "Classifying readmissions to a cardiac intensive care unit," Annals of Operations Research, Springer, vol. 263(1), pages 429-451, April.
    2. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    3. Daniel Gartner & Rainer Kolisch & Daniel B. Neill & Rema Padman, 2015. "Machine Learning Approaches for Early DRG Classification and Resource Allocation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 718-734, November.
    4. Talayeh Razzaghi & Ilya Safro & Joseph Ewing & Ehsan Sadrfaridpour & John D. Scott, 2019. "Predictive models for bariatric surgery risks with imbalanced medical datasets," Annals of Operations Research, Springer, vol. 280(1), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:16:y:2013:i:2:p:119-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.