IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v261y2018i1d10.1007_s10479-017-2614-0.html
   My bibliography  Save this article

Waiting time distribution for an exchangeable item repair system with up to two failed components

Author

Listed:
  • Michael Dreyfuss

    (Jerusalem College of Technology)

  • Alan Stulman

    (Jerusalem College of Technology)

Abstract

Models involving exchangeable component repair systems are widely treated in the literature. In such systems a customer arrives at a repair queue with a failed component which is replaced from stocks of previously repaired components and spares. Various strategies and service measures have been discussed. The waiting time distribution for a single failed component has also been developed. Most customers who arrive at a repair facility will arrive with a single failed component type. They will be referred to an appropriate service queue which will ultimately exchange that particular failed component. Due to its complexity the development of the waiting time distribution for a single queue servicing multiple simultaneous component failures has been generally neglected. In a previous paper we found the waiting time distribution for the case where an item arrives with exactly two simultaneously failed components. In this paper we will consider a much more general case where either one or both of the components have failed. Finding the waiting time distribution is important because it can lead to better facility planning and new realistic service measures. For example, how many extra spares should be allocated to the system so that the probability of waiting more than an acceptable amount of time (the window fill rate) could be kept to within a predefined limit?

Suggested Citation

  • Michael Dreyfuss & Alan Stulman, 2018. "Waiting time distribution for an exchangeable item repair system with up to two failed components," Annals of Operations Research, Springer, vol. 261(1), pages 167-184, February.
  • Handle: RePEc:spr:annopr:v:261:y:2018:i:1:d:10.1007_s10479-017-2614-0
    DOI: 10.1007/s10479-017-2614-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2614-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2614-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen C. Graves, 1985. "A Multi-Echelon Inventory Model for a Repairable Item with One-for-One Replenishment," Management Science, INFORMS, vol. 31(10), pages 1247-1256, October.
    2. Jing-Sheng Song & Susan H. Xu & Bin Liu, 1999. "Order-Fulfillment Performance Measures in an Assemble-to-Order System with Stochastic Leadtimes," Operations Research, INFORMS, vol. 47(1), pages 131-149, February.
    3. Jing-Sheng Song, 1998. "On the Order Fill Rate in a Multi-Item, Base-Stock Inventory System," Operations Research, INFORMS, vol. 46(6), pages 831-845, December.
    4. Hoen, K.M.R. & Güllü, R. & van Houtum, G.J. & Vliegen, I.M.H., 2011. "A simple and accurate approximation for the order fill rates in lost-sales Assemble-to-Order systems," International Journal of Production Economics, Elsevier, vol. 133(1), pages 95-104, September.
    5. Diaz, Angel & Fu, Michael C., 1997. "Models for multi-echelon repairable item inventory systems with limited repair capacity," European Journal of Operational Research, Elsevier, vol. 97(3), pages 480-492, March.
    6. Jing-Sheng Song & David D. Yao, 2002. "Performance Analysis and Optimization of Assemble-to-Order Systems with Random Lead Times," Operations Research, INFORMS, vol. 50(5), pages 889-903, October.
    7. Costantino, Francesco & Di Gravio, Giulio & Tronci, Massimo, 2013. "Multi-echelon, multi-indenture spare parts inventory control subject to system availability and budget constraints," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 95-101.
    8. Kennedy, W. J. & Wayne Patterson, J. & Fredendall, Lawrence D., 2002. "An overview of recent literature on spare parts inventories," International Journal of Production Economics, Elsevier, vol. 76(2), pages 201-215, March.
    9. M. Berg & M. J. M. Posner, 1990. "Customer Delay in M/G/∞ Repair Systems with Spares," Operations Research, INFORMS, vol. 38(2), pages 344-348, April.
    10. Larsen, C. & Thorstenson, A., 2014. "The order and volume fill rates in inventory control systems," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 13-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dreyfuss, Michael & Giat, Yahel, 2017. "Optimal spares allocation to an exchangeable-item repair system with tolerable wait," European Journal of Operational Research, Elsevier, vol. 261(2), pages 584-594.
    2. Costantino, Francesco & Di Gravio, Giulio & Patriarca, Riccardo & Petrella, Lea, 2018. "Spare parts management for irregular demand items," Omega, Elsevier, vol. 81(C), pages 57-66.
    3. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    4. Güllü, Refik & Köksalan, Murat, 2013. "A model for performance evaluation and stock optimization in a kit management problem," International Journal of Production Economics, Elsevier, vol. 143(2), pages 527-535.
    5. Hoen, K.M.R. & Güllü, R. & van Houtum, G.J. & Vliegen, I.M.H., 2011. "A simple and accurate approximation for the order fill rates in lost-sales Assemble-to-Order systems," International Journal of Production Economics, Elsevier, vol. 133(1), pages 95-104, September.
    6. Yingdong Lu & Jing-Sheng Song & David D. Yao, 2003. "Order Fill Rate, Leadtime Variability, and Advance Demand Information in an Assemble-to-Order System," Operations Research, INFORMS, vol. 51(2), pages 292-308, April.
    7. van Jaarsveld, Willem & Dollevoet, Twan & Dekker, Rommert, 2015. "Improving spare parts inventory control at a repair shop," Omega, Elsevier, vol. 57(PB), pages 217-229.
    8. Jing-Sheng Song & Yao Zhao, 2009. "The Value of Component Commonality in a Dynamic Inventory System with Lead Times," Manufacturing & Service Operations Management, INFORMS, vol. 11(3), pages 493-508, March.
    9. Gao, Chunyan & Shen, Houcai & Cheng, T.C.E., 2010. "Order-fulfillment performance analysis of an assemble-to-order system with unreliable machines," International Journal of Production Economics, Elsevier, vol. 126(2), pages 341-349, August.
    10. Fritzsche, R., 2012. "Cost adjustment for single item pooling models using a dynamic failure rate: A calculation for the aircraft industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1065-1079.
    11. Yao Zhao & David Simchi-Levi, 2006. "Performance Analysis and Evaluation of Assemble-to-Order Systems with Stochastic Sequential Lead Times," Operations Research, INFORMS, vol. 54(4), pages 706-724, August.
    12. Ana Bušić & Ingrid Vliegen & Alan Scheller-Wolf, 2012. "Comparing Markov Chains: Aggregation and Precedence Relations Applied to Sets of States, with Applications to Assemble-to-Order Systems," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 259-287, May.
    13. Jin, Tongdan & Tian, Yu, 2012. "Optimizing reliability and service parts logistics for a time-varying installed base," European Journal of Operational Research, Elsevier, vol. 218(1), pages 152-162.
    14. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    15. Cheng, T.C.E. & Gao, Chunyan & Shen, Houcai, 2011. "Production planning and inventory allocation of a single-product assemble-to-order system with failure-prone machines," International Journal of Production Economics, Elsevier, vol. 131(2), pages 604-617, June.
    16. Mustafa K. Doğru & Martin I. Reiman & Qiong Wang, 2010. "A Stochastic Programming Based Inventory Policy for Assemble-to-Order Systems with Application to the W Model," Operations Research, INFORMS, vol. 58(4-part-1), pages 849-864, August.
    17. Yingdong Lu & Jing-Sheng Song & Yao Zhao, 2010. "No-Holdback Allocation Rules for Continuous-Time Assemble-to-Order Systems," Operations Research, INFORMS, vol. 58(3), pages 691-705, June.
    18. Savas Dayanik & Jing-Sheng Song & Susan H. Xu, 2003. "The Effectiveness of Several Performance Bounds for Capacitated Production, Partial-Order-Service, Assemble-to-Order Systems," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 230-251, December.
    19. Gregory A. DeCroix & Jing-Sheng Song & Paul H. Zipkin, 2009. "Managing an Assemble-to-Order System with Returns," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 144-159, October.
    20. Vliegen, I.M.H. & van Houtum, G.J., 2009. "Approximate evaluation of order fill rates for an inventory system of service tools," International Journal of Production Economics, Elsevier, vol. 118(1), pages 339-351, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:261:y:2018:i:1:d:10.1007_s10479-017-2614-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.