IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v260y2018i1d10.1007_s10479-017-2638-5.html
   My bibliography  Save this article

Constant proportion portfolio insurance in defined contribution pension plan management under discrete-time trading

Author

Listed:
  • Busra Zeynep Temocin

    (Middle East Technical University)

  • Ralf Korn

    (University of Kaiserslautern
    Fraunhofer ITWM)

  • A. Sevtap Selcuk-Kestel

    (Middle East Technical University)

Abstract

Portfolio insurance strategies are designed to protect investors against adverse market movements by providing an initially specified guarantee during the investment period. This kind of a protection mechanism is especially important for systems with long investment horizons such as pension plans. In this paper, we consider various versions of the Constant Proportion Portfolio Insurance (CPPI) method under discrete-time trading for a defined-contribution pension plan that includes regular contributions of random size dependent on a stochastic income process. We compare different floor processes for the CPPI with regard to gap-risk and cash-lock probability by computing respective risk measures.

Suggested Citation

  • Busra Zeynep Temocin & Ralf Korn & A. Sevtap Selcuk-Kestel, 2018. "Constant proportion portfolio insurance in defined contribution pension plan management under discrete-time trading," Annals of Operations Research, Springer, vol. 260(1), pages 515-544, January.
  • Handle: RePEc:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-017-2638-5
    DOI: 10.1007/s10479-017-2638-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2638-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2638-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    2. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    3. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    4. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    7. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    8. Philippe Bertrand & Jean-Luc Prigent, 2005. "Portfolio Insurance Strategies: OBPI versus CPPI," Post-Print hal-01833077, HAL.
    9. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guohui Guan & Zongxia Liang & Yi Xia, 2023. "Optimal management of DB pension fund under both underfunded and overfunded cases," Papers 2302.08731, arXiv.org.
    2. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    3. Li, Zhuyue & Zhao, Peixin & Han, Xue, 2022. "Agri-food supply chain network disruption propagation and recovery based on cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    4. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    5. Peyman Alipour & Ali Foroush Bastani, 2023. "Value-at-Risk-Based Portfolio Insurance: Performance Evaluation and Benchmarking Against CPPI in a Markov-Modulated Regime-Switching Market," Papers 2305.12539, arXiv.org.
    6. Katia Colaneri & Daniele Mancinelli & Immacolata Oliva, 2024. "On the optimal design of a new class of proportional portfolio insurance strategies in a jump-diffusion framework," Papers 2407.21148, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Mei-Ling & Chen, Son-Nan & Lai, Gene C. & Wu, Ting-Pin, 2018. "Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 87-104.
    2. Johanna Scheller & Jacques Pézier, 2008. "Optimal Investment Strategies and Performance Sharing Rules for Pension Schemes with Minimum Guarantee," ICMA Centre Discussion Papers in Finance icma-dp2008-09, Henley Business School, University of Reading, revised Oct 2009.
    3. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    4. Alessandro Milazzo & Elena Vigna, 2018. "The Italian Pension Gap: A Stochastic Optimal Control Approach," Risks, MDPI, vol. 6(2), pages 1-20, April.
    5. Soriano-Morales, Y. V. & Vallejo-Jiménez, Benjamín & Venegas-Martínez, Francisco, 2017. "Impact of the degree of relative risk aversion, the interest rate and the exchange rate depreciation on economic welfare in a small open economy," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 13(25), pages 7-24, Primer se.
    6. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    7. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.
    8. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    9. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.
    10. Alessandro Milazzo & Elena Vigna, 2018. "“The Italian Pension Gap: a Stochastic Optimal Control Approach"," CeRP Working Papers 179, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    11. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    12. Ma, Qing-Ping, 2011. "On "optimal pension management in a stochastic framework" with exponential utility," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 61-69, July.
    13. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    14. Katarzyna Romaniuk, 2007. "The optimal asset allocation of the main types of pension funds: a unified framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 113-128, December.
    15. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    16. Mei-Ling Tang & Ting-Pin Wu & Ming-Chin Hung, 2022. "Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment," Mathematics, MDPI, vol. 10(14), pages 1-21, July.
    17. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    18. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    19. Liang, Zongxia & Ma, Ming, 2015. "Optimal dynamic asset allocation of pension fund in mortality and salary risks framework," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 151-161.
    20. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-017-2638-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.