IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v292y2020i2d10.1007_s10479-019-03276-1.html
   My bibliography  Save this article

Equivalence between time consistency and nested formula

Author

Listed:
  • Henri Gérard

    (Université Paris-Est, CERMICS (ENPC)
    Université Paris-Est, Labex Bézout)

  • Michel Lara

    (Université Paris-Est, CERMICS (ENPC))

  • Jean-Philippe Chancelier

    (Université Paris-Est, CERMICS (ENPC))

Abstract

Figure out a situation where, at the beginning of every week, one has to rank every pair of stochastic processes starting from that week up to the horizon. Suppose that two processes are equal at the beginning of the week. The ranking procedure is time consistent if the ranking does not change between this week and the next one. In this paper, we propose a minimalist definition of time consistency (TC) between two (assessment) mappings. With very few assumptions, we are able to prove an equivalence between time consistency and a nested formula (NF) between the two mappings. Thus, in a sense, two assessments are consistent if and only if one is factored into the other. We review the literature and observe that the various definitions of TC (or of NF) are special cases of ours, as they always include additional assumptions. By stripping off these additional assumptions, we present an overview of the literature where the specific contributions of authors are enlightened. Moreover, we present two classes of mappings, translation invariant mappings and Fenchel–Moreau conjugates, that display time consistency under suitable assumptions.

Suggested Citation

  • Henri Gérard & Michel Lara & Jean-Philippe Chancelier, 2020. "Equivalence between time consistency and nested formula," Annals of Operations Research, Springer, vol. 292(2), pages 627-647, September.
  • Handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-019-03276-1
    DOI: 10.1007/s10479-019-03276-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03276-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03276-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. David M. Kreps & Evan L. Porteus, 2013. "Temporal von Neumann—Morgenstern and Induced Preferences," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 11, pages 181-206, World Scientific Publishing Co. Pte. Ltd..
    3. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    5. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    6. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    7. Bezalel Peleg & Menahem E. Yaari, 1973. "On the Existence of a Consistent Course of Action when Tastes are Changing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 40(3), pages 391-401.
    8. Epstein, Larry G. & Schneider, Martin, 2003. "Recursive multiple-priors," Journal of Economic Theory, Elsevier, vol. 113(1), pages 1-31, November.
    9. De Lara, Michel & Leclère, Vincent, 2016. "Building up time-consistency for risk measures and dynamic optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 177-187.
    10. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Conditional Risk Mappings," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 544-561, August.
    11. Peter J. Hammond, 1976. "Changing Tastes and Coherent Dynamic Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 43(1), pages 159-173.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Stuart Dreyfus, 2002. "Richard Bellman on the Birth of Dynamic Programming," Operations Research, INFORMS, vol. 50(1), pages 48-51, February.
    14. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    15. Alexander Shapiro, 2016. "Rectangular Sets of Probability Measures," Operations Research, INFORMS, vol. 64(2), pages 528-541, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri G'erard & Michel de Lara & Jean-Philippe Chancelier, 2017. "Equivalence Between Time Consistency and Nested Formula," Papers 1711.08633, arXiv.org, revised May 2019.
    2. Pierre Carpentier & Jean-Philippe Chancelier & Guy Cohen & Michel Lara & Pierre Girardeau, 2012. "Dynamic consistency for stochastic optimal control problems," Annals of Operations Research, Springer, vol. 200(1), pages 247-263, November.
    3. De Lara, Michel & Leclère, Vincent, 2016. "Building up time-consistency for risk measures and dynamic optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 177-187.
    4. Samuel N. Cohen & Tanut Treetanthiploet, 2019. "Gittins' theorem under uncertainty," Papers 1907.05689, arXiv.org, revised Jun 2021.
    5. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    6. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    7. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    8. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    9. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    10. Cheridito, Patrick & Stadje, Mitja, 2009. "Time-inconsistency of VaR and time-consistent alternatives," Finance Research Letters, Elsevier, vol. 6(1), pages 40-46, March.
    11. D. Madan & M. Pistorius & M. Stadje, 2017. "On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation," Finance and Stochastics, Springer, vol. 21(4), pages 1073-1102, October.
    12. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2018. "A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 204-221, February.
    13. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    14. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    15. Zhiping Chen & Jia Liu & Gang Li & Zhe Yan, 2016. "Composite time-consistent multi-period risk measure and its application in optimal portfolio selection," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 515-540, October.
    16. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    17. Daniel Bartl, 2016. "Conditional nonlinear expectations," Papers 1612.09103, arXiv.org, revised Mar 2019.
    18. Dejian Tian & Xunlian Wang, 2023. "Dynamic star-shaped risk measures and $g$-expectations," Papers 2305.02481, arXiv.org.
    19. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    20. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-019-03276-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.