IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v248y2017i1d10.1007_s10479-016-2225-1.html
   My bibliography  Save this article

Setting handicaps to industrial sectors in DEA illustrated by Ethiopian industry

Author

Listed:
  • Kidanemariam Berhe Hailu

    (National Graduate Institute for Policy Studies (GRIPS)
    FDRE Policy Study and Research Center)

  • Kaoru Tone

    (National Graduate Institute for Policy Studies (GRIPS))

Abstract

In the ordinary macro-economic input–output tables, the industrial sector consists of several dozen industries and each industry in a certain sector is an aggregate of many companies in the sector. The sectoral statistics are the sum of statistics of companies in the respective sector. Usually, all sectors have the same set of inputs for producing outputs. For example, they have labour, capital and intermediate input as input and amount of production as output. We can apply traditional DEA models for evaluation of efficiency regarding all sectors by means of these common input and output factors. However, there remain concerns about comparing all sectors as a scratch race. Some sectors are in fields with matured technologies, while others are in emerging fields. Some are labour intensive, while others are capital intensive. These situations lead us to compare sectors under a handicap race. In this paper, we propose a new DEA model based on the non-convex frontiers that all associated sectors may exhibit and from which handicaps are derived. We apply this model to Ethiopian industry.

Suggested Citation

  • Kidanemariam Berhe Hailu & Kaoru Tone, 2017. "Setting handicaps to industrial sectors in DEA illustrated by Ethiopian industry," Annals of Operations Research, Springer, vol. 248(1), pages 189-207, January.
  • Handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2225-1
    DOI: 10.1007/s10479-016-2225-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2225-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2225-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tetsushi Sonobe & John E. Akoten & Keijiro Otsuka, 2009. "An Exploration into the Successful Development of the Leather‐Shoe Industry in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 13(4), pages 719-736, November.
    2. Kaoru Tone & Miki Tsutsui, 2013. "How to deal with S-shaped curve in DEA," GRIPS Discussion Papers 13-10, National Graduate Institute for Policy Studies.
    3. Kaoru Tone & Biresh Sahoo, 2006. "Re-examining scale elasticity in DEA," Annals of Operations Research, Springer, vol. 145(1), pages 69-87, July.
    4. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    5. K. Tone & M. Tsutsui, 2015. "How to Deal with Non-Convex Frontiers in Data Envelopment Analysis," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 1002-1028, September.
    6. Necmi Avkiran & Kaoru Tone & Miki Tsutsui, 2008. "Bridging radial and non-radial measures of efficiency in DEA," Annals of Operations Research, Springer, vol. 164(1), pages 127-138, November.
    7. Sebastián Lozano & Gabriel Villa, 2010. "Gradual technical and scale efficiency improvement in DEA," Annals of Operations Research, Springer, vol. 173(1), pages 123-136, January.
    8. O. Olesen & N. Petersen, 2009. "Target and technical efficiency in DEA: controlling for environmental characteristics," Journal of Productivity Analysis, Springer, vol. 32(1), pages 27-40, August.
    9. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjeet Singh & Prabhat Ranjan, 2018. "Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education," Annals of Operations Research, Springer, vol. 269(1), pages 641-666, October.
    2. Zufeng Shang & Fenglai Wang & Xu Yang, 2022. "The Efficiency of the Chinese Prefabricated Building Industry and Its Influencing Factors: An Empirical Study," Sustainability, MDPI, vol. 14(17), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastián Lozano & Narges Soltani & Akram Dehnokhalaji, 2020. "A compromise programming approach for target setting in DEA," Annals of Operations Research, Springer, vol. 288(1), pages 363-390, May.
    2. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, June.
    3. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    4. K. Tone & M. Tsutsui, 2015. "How to Deal with Non-Convex Frontiers in Data Envelopment Analysis," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 1002-1028, September.
    5. Veronese da Silva, Aline & Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia, 2022. "Accounting multiple environmental variables in DEA energy transmission benchmarking modelling: The 2019 Brazilian case," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    6. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    7. Shiu-Wan Hung & Chao-Liang Chang & Shu Ming Liu, 2019. "Innovation System Assessment Model for Sustainability Planning in Taiwan," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    8. S. Lozano & G. Villa, 2019. "Data envelopment analysis of systems with multiple modes of functioning," Annals of Operations Research, Springer, vol. 278(1), pages 17-41, July.
    9. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    10. Wanping Yang & Bingyu Zhao & Jinkai Zhao & Zhengda Li, 2019. "An Empirical Study on the Impact of Foreign Strategic Investment on Banking Sustainability in China," Sustainability, MDPI, vol. 11(1), pages 1-15, January.
    11. Qian Liu & Bo Li & Muhammad Mohiuddin, 2018. "Prediction and Decomposition of Efficiency Differences in Chinese Provincial Community Health Services," IJERPH, MDPI, vol. 15(10), pages 1-14, October.
    12. Necmi Kemal Avkiran, 2017. "An illustration of multiple-stakeholder perspective using a survey across Australia, China and Japan," Annals of Operations Research, Springer, vol. 248(1), pages 93-121, January.
    13. Song, Malin & Wang, Jianlin & Zhao, Jiajia, 2023. "Effects of rising and extreme temperatures on production factor efficiency: Evidence from China's cities," International Journal of Production Economics, Elsevier, vol. 260(C).
    14. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
    15. Czyżewski, Bazyli & Kryszak, Łukasz, 2023. "Can a pursuit of productivity be reconciled with sustainable practices in small-scale farming? – Evidence from central and eastern Europe," MPRA Paper 117642, University Library of Munich, Germany, revised 31 May 2023.
    16. Fangqing Wei & Yanan Fu & Feng Yang & Chun Sun & Sheng Ang, 2023. "Closest target setting with minimum improvement costs considering demand and resource mismatches," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    17. Calogero Guccio & Giacomo Pignataro & Ilde Rizzo, 2014. "Evaluating the efficiency of public procurement contracts for cultural heritage conservation works in Italy," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 38(1), pages 43-70, February.
    18. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    19. Darold Barnum & John Gleason, 2011. "Measuring efficiency under fixed proportion technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 243-262, June.
    20. Bogetoft, Peter & Wittrup, Jesper, 2021. "Benefit-of-the-doubt approach to workload indicators: Simplifying the use of case weights in court evaluations," Omega, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2225-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.