IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v243y2016i1d10.1007_s10479-013-1479-0.html
   My bibliography  Save this article

Optimal iterative QP and QPQC algorithms

Author

Listed:
  • Zdeněk Dostál

    (Technical University of Ostrava)

  • Lukáš Pospíšil

    (Technical University of Ostrava)

Abstract

We review our recent results in the development of optimal algorithms for the minimization of a strictly convex quadratic function subject to separable convex inequality constraints and/or linear equality constraints. A unique feature of our algorithms is the theoretically supported bound on the rate of convergence in terms of the bounds on the spectrum of the Hessian of the cost function, independent of representation of the constraints. When applied to the class of convex QP or QPQC problems with the spectrum in a given positive interval and a sparse Hessian matrix, the algorithms enjoy optimal complexity, i.e., they can find an approximate solution at the cost that is proportional to the number of unknowns. The algorithms do not assume representation of the linear equality constraints by full rank matrices. The efficiency of our algorithms is demonstrated by the evaluation of the projection of a point to the intersection of the unit cube and unit sphere with hyperplanes.

Suggested Citation

  • Zdeněk Dostál & Lukáš Pospíšil, 2016. "Optimal iterative QP and QPQC algorithms," Annals of Operations Research, Springer, vol. 243(1), pages 5-18, August.
  • Handle: RePEc:spr:annopr:v:243:y:2016:i:1:d:10.1007_s10479-013-1479-0
    DOI: 10.1007/s10479-013-1479-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-013-1479-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-013-1479-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacek Gondzio & Andreas Grothey, 2007. "Parallel interior-point solver for structured quadratic programs: Application to financial planning problems," Annals of Operations Research, Springer, vol. 152(1), pages 319-339, July.
    2. L. Fernandes & A. Fischer & J. Júdice & C. Requejo & J. Soares, 1998. "A block active set algorithm for large-scalequadratic programming with box constraints," Annals of Operations Research, Springer, vol. 81(0), pages 75-96, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2020. "Optimization techniques for tree-structured nonlinear problems," Computational Management Science, Springer, vol. 17(3), pages 409-436, October.
    2. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    3. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
    4. Brás, Carmo P. & Fischer, Andreas & Júdice, Joaquim J. & Schönefeld, Klaus & Seifert, Sarah, 2017. "A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 36-48.
    5. Frank E. Curtis & Arvind U. Raghunathan, 2017. "Solving nearly-separable quadratic optimization problems as nonsmooth equations," Computational Optimization and Applications, Springer, vol. 67(2), pages 317-360, June.
    6. Xi Yang & Jacek Gondzio & Andreas Grothey, 2010. "Asset liability management modelling with risk control by stochastic dominance," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 73-93, June.
    7. Danielson, Mats & Ekenberg, Love, 2007. "Computing upper and lower bounds in interval decision trees," European Journal of Operational Research, Elsevier, vol. 181(2), pages 808-816, September.
    8. Che Xu & Wenjun Chang & Weiyong Liu, 2023. "Data-driven decision model based on local two-stage weighted ensemble learning," Annals of Operations Research, Springer, vol. 325(2), pages 995-1028, June.
    9. Fábián, Csaba I., 2008. "Handling CVaR objectives and constraints in two-stage stochastic models," European Journal of Operational Research, Elsevier, vol. 191(3), pages 888-911, December.
    10. Amar Andjouh & Mohand Ouamer Bibi, 2022. "Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 360-378, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:243:y:2016:i:1:d:10.1007_s10479-013-1479-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.