IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v191y2008i3p888-911.html
   My bibliography  Save this article

Handling CVaR objectives and constraints in two-stage stochastic models

Author

Listed:
  • Fábián, Csaba I.

Abstract

Based on the polyhedral representation of Künzi-Bay and Mayer [Künzi-Bay, A., Mayer, J., 2006. Computational aspects of minimizing conditional value-at-risk. Computational Management Science 3, 3-27] , we propose decomposition frameworks for handling CVaR objectives and constraints in two-stage stochastic models. For the solution of the decomposed problems we propose special Level-type methods.

Suggested Citation

  • Fábián, Csaba I., 2008. "Handling CVaR objectives and constraints in two-stage stochastic models," European Journal of Operational Research, Elsevier, vol. 191(3), pages 888-911, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:888-911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00435-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Kall & János Mayer, 2005. "Stochastic Linear Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-24440-2, April.
    2. Alexandra Künzi-Bay & János Mayer, 2006. "Computational aspects of minimizing conditional value-at-risk," Computational Management Science, Springer, vol. 3(1), pages 3-27, January.
    3. repec:dgr:rugsom:02a33 is not listed on IDEAS
    4. Jacek Gondzio & Andreas Grothey, 2007. "Parallel interior-point solver for structured quadratic programs: Application to financial planning problems," Annals of Operations Research, Springer, vol. 152(1), pages 319-339, July.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Norbert J. Jobst & Stavros A. Zenios, 2001. "The Tail that Wags the Dog: Integrating Credit Risk in Asset Portfolios," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 3(1), pages 31-43, April.
    7. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    8. Klein Haneveld, Willem K. & Vlerk, Maarten H. van der, 2002. "Integrated chance constraints: reduced forms and an algorithm," Research Report 02A33, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    9. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benita, Francisco & López-Ramos, Francisco & Nasini, Stefano, 2019. "A bi-level programming approach for global investment strategies with financial intermediation," European Journal of Operational Research, Elsevier, vol. 274(1), pages 375-390.
    2. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    3. Álvarez-Miranda, Eduardo & Garcia-Gonzalo, Jordi & Ulloa-Fierro, Felipe & Weintraub, Andrés & Barreiro, Susana, 2018. "A multicriteria optimization model for sustainable forest management under climate change uncertainty: An application in Portugal," European Journal of Operational Research, Elsevier, vol. 269(1), pages 79-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    2. Pu Huang & Dharmashankar Subramanian, 2012. "Iterative estimation maximization for stochastic linear programs with conditional value-at-risk constraints," Computational Management Science, Springer, vol. 9(4), pages 441-458, November.
    3. Youssouf A. F. Toukourou & Franc{c}ois Dufresne, 2015. "ON Integrated Chance Constraints in ALM for Pension Funds," Papers 1503.05343, arXiv.org.
    4. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    5. Kolos Ágoston, 2012. "CVaR minimization by the SRA algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 623-632, December.
    6. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    7. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    8. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    9. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    10. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    11. Berend Roorda, 2010. "An algorithm for sequential tail value at risk for path-independent payoffs in a binomial tree," Annals of Operations Research, Springer, vol. 181(1), pages 463-483, December.
    12. F. W. Meng & J. Sun & M. Goh, 2010. "Stochastic Optimization Problems with CVaR Risk Measure and Their Sample Average Approximation," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 399-418, August.
    13. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    14. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    15. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
    16. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2002. "CVaR models with selective hedging for international asset allocation," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1535-1561, July.
    17. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    18. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    19. Amir Ahmadi-Javid & Malihe Fallah-Tafti, 2017. "Portfolio Optimization with Entropic Value-at-Risk," Papers 1708.05713, arXiv.org.
    20. Ling, Aifan & Sun, Jie & Xiu, Naihua & Yang, Xiaoguang, 2017. "Robust two-stage stochastic linear optimization with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 215-229.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:888-911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.