IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v236y2016i1d10.1007_s10479-014-1722-3.html
   My bibliography  Save this article

Modeling costly learning and counter-learning in a defender-attacker game with private defender information

Author

Listed:
  • Jie Xu

    (SUNY at Buffalo)

  • Jun Zhuang

    (SUNY at Buffalo)

Abstract

In asymmetric war scenarios (e.g., counter-terrorism), the adversary usually invests a significant time to learn the system structure and identify vulnerable components, before launching attacks. Traditional game-theoretic defender-attacker models either ignore such learning periods or the entailed costs. This paper fills the gap by analyzing the strategic interactions of the terrorist’s costly learning and defender’s counter-learning and defense strategies in a game with private defender information. Our model allows six possible attacker strategies: (a) attack immediately; (b) learn and attack; (c) learn and not attack; (d) learn and attack when appearing vulnerable and not attack when appearing invulnerable; (e) learn and not attack when appearing vulnerable and attack when appearing invulnerable; and (f) not attack. Our results show that four of the six strategies (a, d, e, f) are possible at equilibrium and the other two (b, c) are strictly dominated. Interestingly, we find that the counterintuitive strategy (e) could be at equilibrium, especially when the probability that the target appears vulnerable given it is invulnerable is sufficiently high. Our results also show that the attacker’s learning cost has a significant impact on both the attacker’s best responses and the defender’s equilibrium deception and defense strategies. Finally, we study the attacker’s values of perfect information and imperfect information, which provide additional insights for defense and counter-learning strategies.

Suggested Citation

  • Jie Xu & Jun Zhuang, 2016. "Modeling costly learning and counter-learning in a defender-attacker game with private defender information," Annals of Operations Research, Springer, vol. 236(1), pages 271-289, January.
  • Handle: RePEc:spr:annopr:v:236:y:2016:i:1:d:10.1007_s10479-014-1722-3
    DOI: 10.1007/s10479-014-1722-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-014-1722-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-014-1722-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barry R. Cobb & Atin Basuchoudhary, 2009. "A Decision Analysis Approach to Solving the Signaling Game," Decision Analysis, INFORMS, vol. 6(4), pages 239-255, December.
    2. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    3. Zhuang, Jun & Bier, Vicki M. & Alagoz, Oguzhan, 2010. "Modeling secrecy and deception in a multiple-period attacker-defender signaling game," European Journal of Operational Research, Elsevier, vol. 203(2), pages 409-418, June.
    4. Brian Roberson, 2006. "The Colonel Blotto game," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 1-24, September.
    5. Jun Zhuang & Vicki Bier, 2011. "Secrecy And Deception At Equilibrium, With Applications To Anti-Terrorism Resource Allocation," Defence and Peace Economics, Taylor & Francis Journals, vol. 22(1), pages 43-61.
    6. Jun Zhuang & Vicki M. Bier, 2010. "Reasons for Secrecy and Deception in Homeland‐Security Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1737-1743, December.
    7. Prajit K. Dutta, 1999. "Strategies and Games: Theory and Practice," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262041693, December.
    8. Gerald Brown & Matthew Carlyle & Douglas Diehl & Jeffrey Kline & Kevin Wood, 2005. "A Two-Sided Optimization for Theater Ballistic Missile Defense," Operations Research, INFORMS, vol. 53(5), pages 745-763, October.
    9. Insua, Insua Rios & Rios, Jesus & Banks, David, 2009. "Adversarial Risk Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 841-854.
    10. Todd Sandler & Kevin Siqueira, 2006. "Global terrorism: deterrence versus pre‐emption," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 39(4), pages 1370-1387, November.
    11. Xiaojun Shan & Jun Zhuang, 2013. "Cost of Equity in Homeland Security Resource Allocation in the Face of a Strategic Attacker," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1083-1099, June.
    12. Powell, Robert, 2007. "Allocating Defensive Resources with Private Information about Vulnerability," American Political Science Review, Cambridge University Press, vol. 101(4), pages 799-809, November.
    13. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    14. Hausken, Kjell & Levitin, Gregory, 2009. "Protection vs. false targets in series systems," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 973-981.
    15. Powell, Robert, 2009. "Sequential, nonzero-sum "Blotto": Allocating defensive resources prior to attack," Games and Economic Behavior, Elsevier, vol. 67(2), pages 611-615, November.
    16. Vicki Bier & Naraphorn Haphuriwat, 2011. "Analytical method to identify the number of containers to inspect at U.S. ports to deter terrorist attacks," Annals of Operations Research, Springer, vol. 187(1), pages 137-158, July.
    17. Chen Wang & Vicki M. Bier, 2013. "Expert Elicitation of Adversary Preferences Using Ordinal Judgments," Operations Research, INFORMS, vol. 61(2), pages 372-385, April.
    18. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    19. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
    2. Jing Yang & Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2021. "Sequential Shortest Path Interdiction with Incomplete Information and Limited Feedback," Decision Analysis, INFORMS, vol. 18(3), pages 218-244, September.
    3. Zhang, Xiaoxiong & Ye, Yanqing & Tan, Yuejin, 2020. "How to protect a genuine target against an attacker trying to detect false targets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Bagchi, Aniruddha & Paul, Jomon A., 2017. "Espionage and the optimal standard of the Customs-Trade Partnership against Terrorism (C-TPAT) program in maritime security," European Journal of Operational Research, Elsevier, vol. 262(1), pages 89-107.
    5. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    6. John B. Coles & Jing Zhang & Jun Zhuang, 2022. "Bridging the research-practice gap in disaster relief: using the IFRC Code of Conduct to develop an aid model," Annals of Operations Research, Springer, vol. 312(2), pages 1337-1357, May.
    7. Kjell Hausken & Jonathan W. Welburn & Jun Zhuang, 2024. "A Review of Attacker–Defender Games and Cyber Security," Games, MDPI, vol. 15(4), pages 1-27, August.
    8. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    9. Roponen, Juho & Ríos Insua, David & Salo, Ahti, 2020. "Adversarial risk analysis under partial information," European Journal of Operational Research, Elsevier, vol. 287(1), pages 306-316.
    10. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    11. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    12. Katherine A. Daniell & Alec Morton & David Ríos Insua, 2016. "Policy analysis and policy analytics," Annals of Operations Research, Springer, vol. 236(1), pages 1-13, January.
    13. Christiansen, Jeffrey & Ernst, Andreas T. & Rieger, Janosch, 2024. "A robust optimization approach for a two-player force-design game," European Journal of Operational Research, Elsevier, vol. 318(2), pages 656-669.
    14. Bakker, Craig & Webster, Jennifer B. & Nowak, Kathleen E. & Chatterjee, Samrat & Perkins, Casey J. & Brigantic, Robert, 2020. "Multi-Game Modeling for Counter-Smuggling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    15. Cen Song & Jun Zhuang, 2017. "Two-stage security screening strategies in the face of strategic applicants, congestions and screening errors," Annals of Operations Research, Springer, vol. 258(2), pages 237-262, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    2. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    3. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    4. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    5. Jie Xu & Jun Zhuang & Zigeng Liu, 2016. "Modeling and mitigating the effects of supply chain disruption in a defender–attacker game," Annals of Operations Research, Springer, vol. 236(1), pages 255-270, January.
    6. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Mahsa Mahboob Ghodsi, 2020. "Prevention of Terrorism–An Assessment of Prior POM Work and Future Potentials," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1789-1815, July.
    7. Kjell Hausken, 2014. "Choosing what to protect when attacker resources and asset valuations are uncertain," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(3), pages 23-44.
    8. Jesus Rios & David Rios Insua, 2012. "Adversarial Risk Analysis for Counterterrorism Modeling," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 894-915, May.
    9. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    10. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    11. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    12. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    13. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    14. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Vineet M. Payyappalli & Jun Zhuang & Victor Richmond R. Jose, 2017. "Deterrence and Risk Preferences in Sequential Attacker–Defender Games with Continuous Efforts," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2229-2245, November.
    16. Paulson, Elisabeth C. & Linkov, Igor & Keisler, Jeffrey M., 2016. "A game theoretic model for resource allocation among countermeasures with multiple attributes," European Journal of Operational Research, Elsevier, vol. 252(2), pages 610-622.
    17. Xiaojun Shan & Jun Zhuang, 2013. "Cost of Equity in Homeland Security Resource Allocation in the Face of a Strategic Attacker," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1083-1099, June.
    18. Nageswara S. V. Rao & Stephen W. Poole & Chris Y. T. Ma & Fei He & Jun Zhuang & David K. Y. Yau, 2016. "Defense of Cyber Infrastructures Against Cyber‐Physical Attacks Using Game‐Theoretic Models," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 694-710, April.
    19. Ridwan Al Aziz & Meilin He & Jun Zhuang, 2020. "An Attacker–defender Resource Allocation Game with Substitution and Complementary Effects," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1481-1506, July.
    20. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:236:y:2016:i:1:d:10.1007_s10479-014-1722-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.