IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i2p656-669.html
   My bibliography  Save this article

A robust optimization approach for a two-player force-design game

Author

Listed:
  • Christiansen, Jeffrey
  • Ernst, Andreas T.
  • Rieger, Janosch

Abstract

We present a new approach to force design that relies on robust decision making with a min–max objective, rather than assumptions about the goals and strategy of an opponent. This idea is explored mathematically in the framework of a round-based two-player Stackelberg game representing an arms race, which features the acquisition of assets by both players and an evaluation of the defensive capability against attack from an opponent using a portfolio of possible tactics. Mathematical analysis has been carried out to determine the structure of optimal strategies for this type of game. This allows the strategy of the first player to be represented as a decision tree with possible moves by the second player consisting of convex combinations of extreme points. Using this insight into the structure of solutions, the optimal strategy for the game can be computed using a large linear program. The effectiveness of this approach is demonstrated using numerical examples.

Suggested Citation

  • Christiansen, Jeffrey & Ernst, Andreas T. & Rieger, Janosch, 2024. "A robust optimization approach for a two-player force-design game," European Journal of Operational Research, Elsevier, vol. 318(2), pages 656-669.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:656-669
    DOI: 10.1016/j.ejor.2024.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turan, Hasan Hüseyin & Jalalvand, Fatemeh & Elsawah, Sondoss & Ryan, Michael J., 2022. "A joint problem of strategic workforce planning and fleet renewal: With an application in defense," European Journal of Operational Research, Elsevier, vol. 296(2), pages 615-634.
    2. Andreas Ernst & Lars Grüne & Janosch Rieger, 2023. "A linear programming approach to approximating the infinite time reachable set of strictly stable linear control systems," Journal of Global Optimization, Springer, vol. 86(2), pages 521-543, June.
    3. Zhang, Jing & Zhuang, Jun & Jose, Victor Richmond R., 2018. "The role of risk preferences in a multi-target defender-attacker resource allocation game," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 95-104.
    4. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    6. Henri Lefebvre, 2024. "Adjustable robust optimization with nonlinear recourses," 4OR, Springer, vol. 22(3), pages 415-416, September.
    7. Jie Xu & Jun Zhuang, 2016. "Modeling costly learning and counter-learning in a defender-attacker game with private defender information," Annals of Operations Research, Springer, vol. 236(1), pages 271-289, January.
    8. Dang, Duc-Cuong & Currie, Christine S.M. & Onggo, Bhakti Stephan & Chaerani, Diah & Achmad, Audi Luqmanul Hakim, 2023. "Budget allocation of food procurement for natural disaster response," European Journal of Operational Research, Elsevier, vol. 311(2), pages 754-768.
    9. Suresh Bolusani & Stefano Coniglio & Ted K. Ralphs & Sahar Tahernejad, 2020. "A Unified Framework for Multistage Mixed Integer Linear Optimization," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 513-560, Springer.
    10. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    11. M. Dempster & R. Thompson, 1998. "Parallelization and aggregation ofnested Benders decomposition," Annals of Operations Research, Springer, vol. 81(0), pages 163-188, June.
    12. Seth Bonder, 1979. "Feature Article—Changing the Future of Operations Research," Operations Research, INFORMS, vol. 27(2), pages 209-224, April.
    13. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    14. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
    15. Ridwan Al Aziz & Meilin He & Jun Zhuang, 2020. "An Attacker–defender Resource Allocation Game with Substitution and Complementary Effects," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1481-1506, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    2. Wang, Shuliang & Sun, Jingya & Zhang, Jianhua & Dong, Qiqi & Gu, Xifeng & Chen, Chen, 2023. "Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    3. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Chaoqi, Fu & Pengtao, Zhang & Lin, Zhou & Yangjun, Gao & Na, Du, 2021. "Camouflage strategy of a Stackelberg game based on evolution rules," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Li, Qing & Li, Mingchu & Zhang, Runfa & Gan, Jianyuan, 2021. "A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Wang, Jian & Cui, Lei, 2023. "Patrolling games with coordination between monitoring devices and patrols," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Han, Lin & Zhao, Xudong & Chen, Zhilong & Wu, Yipeng & Su, Xiaochao & Zhang, Ning, 2021. "Optimal allocation of defensive resources to defend urban power networks against different types of attackers," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    12. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    13. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    14. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    15. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    16. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    17. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    18. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    19. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    20. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:656-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.