IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v319y2022i2d10.1007_s10479-021-04462-w.html
   My bibliography  Save this article

Decision space robustness for multi-objective integer linear programming

Author

Listed:
  • Michael Stiglmayr

    (University of Wuppertal)

  • José Rui Figueira

    (Universidade de Lisboa)

  • Kathrin Klamroth

    (University of Wuppertal)

  • Luís Paquete

    (University of Coimbra)

  • Britta Schulze

    (University of Wuppertal)

Abstract

In this article we introduce robustness measures in the context of multi-objective integer linear programming problems. The proposed measures are in line with the concept of decision robustness, which considers the uncertainty with respect to the implementation of a specific solution. An efficient solution is considered to be decision robust if many solutions in its neighborhood are efficient as well. This rather new area of research differs from robustness concepts dealing with imperfect knowledge of data parameters. Our approach implies a two-phase procedure, where in the first phase the set of all efficient solutions is computed, and in the second phase the neighborhood of each one of the solutions is determined. The indicators we propose are based on the knowledge of these neighborhoods. We discuss consistency properties for the indicators, present some numerical evaluations for specific problem classes and show potential fields of application.

Suggested Citation

  • Michael Stiglmayr & José Rui Figueira & Kathrin Klamroth & Luís Paquete & Britta Schulze, 2022. "Decision space robustness for multi-objective integer linear programming," Annals of Operations Research, Springer, vol. 319(2), pages 1769-1791, December.
  • Handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-021-04462-w
    DOI: 10.1007/s10479-021-04462-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04462-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04462-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    2. Almeida-Dias, J. & Figueira, J.R. & Roy, B., 2010. "Electre Tri-C: A multiple criteria sorting method based on characteristic reference actions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 565-580, August.
    3. Jonas Ide & Elisabeth Köbis, 2014. "Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(1), pages 99-127, August.
    4. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    5. Katrin Witting & Sina Ober-Blöbaum & Michael Dellnitz, 2013. "A variational approach to define robustness for parametric multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 57(2), pages 331-345, October.
    6. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    7. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    8. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    9. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    10. Ehrgott, Matthias & Klamroth, Kathrin, 1997. "Connectedness of efficient solutions in multiple criteria combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 97(1), pages 159-166, February.
    11. Jochen Gorski & Kathrin Klamroth & Stefan Ruzika, 2011. "Connectedness of Efficient Solutions in Multiple Objective Combinatorial Optimization," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 475-497, September.
    12. Roy, B. & Figueira, J.R. & Almeida-Dias, J., 2014. "Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: Theoretical results and practical issues," Omega, Elsevier, vol. 43(C), pages 9-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santini, Alberto & Malaguti, Enrico, 2024. "The min-Knapsack problem with compactness constraints and applications in statistics," European Journal of Operational Research, Elsevier, vol. 312(1), pages 385-397.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    2. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    3. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    4. Qamrul Hasan Ansari & Elisabeth Köbis & Pradeep Kumar Sharma, 2019. "Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 817-839, June.
    5. Jiang, Ling & Cao, Jinde & Xiong, Lianglin, 2019. "Generalized multiobjective robustness and relations to set-valued optimization," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 599-608.
    6. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.
    7. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    8. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    9. Eichfelder, Gabriele & Quintana, Ernest, 2024. "Set-based robust optimization of uncertain multiobjective problems via epigraphical reformulations," European Journal of Operational Research, Elsevier, vol. 313(3), pages 871-882.
    10. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    11. L. Q. Anh & T. Q. Duy & D. V. Hien, 2020. "Well-posedness for the optimistic counterpart of uncertain vector optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 517-533, December.
    12. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    13. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
    14. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    15. Caprari, Elisa & Cerboni Baiardi, Lorenzo & Molho, Elena, 2019. "Primal worst and dual best in robust vector optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 830-838.
    16. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "A Unified Approach Through Image Space Analysis to Robustness in Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 466-493, February.
    17. Bokrantz, Rasmus & Fredriksson, Albin, 2017. "Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 262(2), pages 682-692.
    18. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    19. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-021-04462-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.