IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v210y2013i1p125-16310.1007-s10479-012-1146-x.html
   My bibliography  Save this article

Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach

Author

Listed:
  • Nader Azad
  • Georgios Saharidis
  • Hamid Davoudpour
  • Hooman Malekly
  • Seyed Yektamaram

Abstract

Disruptions rarely occur in supply chains, but their negative financial and technical impacts make the recovery process very slow. In this paper, we propose a capacitated supply chain network design (SCND) model under random disruptions both in facility and transportation, which seeks to determine the optimal location and types of distribution centers (DC) and also the best plan to assign customers to each opened DC. Unlike other studies in the extent literature, we use new concepts of reliability to model the strategic behavior of DCs and customers at the network: (1) Failure of DCs might be partial, i.e. a disrupted DC might still be able to serve with a portion of its initial capacity (2) The lost capacity of a disrupted DC shall be provided from a non-disrupted one and (3) The lost capacity fraction of a disrupted DC depends on its initial investment amount in the design phase. In order to solve the proposed model optimally, a modified version of Benders’ Decomposition (BD) is applied. This modification tackles the difficulties of the BD’s master problem (MP), which ultimately improves the solution time of BD significantly. The classical BD approach results in low density cuts in some cases, Covering Cut Bundle (CCB) generation addresses this issue by generating a bundle of cuts instead of a single cut, which could cover more decision variables of the MP. Our inspiration to improve the CCB generation led to a new method, namely Maximum Density Cut (MDC) generation. MDC is based on the observation that in some cases CCB generation is cumbersome to solve in order to cover all decision variables of the MP rather than to cover part of them. Thus the MDC method generates a cut to cover the remaining decision variables which are not covered by CCB. Numerical experiments demonstrate the practicability of the proposed model to be promising in the SCND area, also the modified BD approach decreases the number of BD iterations and improves the CPU times, significantly. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
  • Handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:125-163:10.1007/s10479-012-1146-x
    DOI: 10.1007/s10479-012-1146-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1146-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1146-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    2. Michael Lim & Mark S. Daskin & Achal Bassamboo & Sunil Chopra, 2010. "A facility reliability problem: Formulation, properties, and algorithm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 58-70, February.
    3. Lian Qi & Zuo-Jun Max Shen & Lawrence V. Snyder, 2010. "The Effect of Supply Disruptions on Supply Chain Design Decisions," Transportation Science, INFORMS, vol. 44(2), pages 274-289, May.
    4. Cote, Gilles & Laughton, Michael A., 1984. "Large-scale mixed integer programming: Benders-type heuristics," European Journal of Operational Research, Elsevier, vol. 16(3), pages 327-333, June.
    5. Parlar, Mahmut, 1997. "Continuous-review inventory problem with random supply interruptions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 366-385, June.
    6. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    7. Mahmut Parlar & Defne Berkin, 1991. "Future supply uncertainty in EOQ models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 107-121, February.
    8. Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
    9. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    10. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
    11. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    12. Sunil Chopra & Gilles Reinhardt & Usha Mohan, 2007. "The importance of decoupling recurrent and disruption risks in a supply chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 544-555, August.
    13. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    14. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    15. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    16. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    17. Jean-François Cordeau & Federico Pasin & Marius Solomon, 2006. "An integrated model for logistics network design," Annals of Operations Research, Springer, vol. 144(1), pages 59-82, April.
    18. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    19. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    20. Mozart Menezes & O. Berman & D. Krass, 2007. "Facility Reliability Issues in Network p-Median Problems: Strategic Centralization and Co-location Effects," Post-Print halshs-00170396, HAL.
    21. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    22. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    23. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    24. Mohebbi, Esmail, 2004. "A replenishment model for the supply-uncertainty problem," International Journal of Production Economics, Elsevier, vol. 87(1), pages 25-37, January.
    25. Oke, Adegoke & Gopalakrishnan, Mohan, 2009. "Managing disruptions in supply chains: A case study of a retail supply chain," International Journal of Production Economics, Elsevier, vol. 118(1), pages 168-174, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    2. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    3. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    4. S.A. Torabi & J. Namdar & S.M. Hatefi & F. Jolai, 2016. "An enhanced possibilistic programming approach for reliable closed-loop supply chain network design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1358-1387, March.
    5. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    6. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.
    7. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    8. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2021. "The impact of congestion on protection decisions in supply networks under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    9. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2017. "Responsive contingency planning of capacitated supply networks under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 13-37.
    10. Abdolreza Roshani & Philip Walker-Davies & Glenn Parry, 2024. "Designing resilient supply chain networks: a systematic literature review of mitigation strategies," Annals of Operations Research, Springer, vol. 341(2), pages 1267-1332, October.
    11. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    12. Li, Xiaopeng, 2013. "An integrated modeling framework for design of logistics networks with expedited shipment services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 46-63.
    13. Trung Hieu Tran & Jesse R. O’Hanley & M. Paola Scaparra, 2017. "Reliable Hub Network Design: Formulation and Solution Techniques," Transportation Science, INFORMS, vol. 51(1), pages 358-375, February.
    14. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    15. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    16. Luohao Tang & Cheng Zhu & Zaili Lin & Jianmai Shi & Weiming Zhang, 2016. "Reliable Facility Location Problem with Facility Protection," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-24, September.
    17. F. Parvaresh & S. Hashemi Golpayegany & S. Moattar Husseini & B. Karimi, 2013. "Solving the p-hub Median Problem Under Intentional Disruptions Using Simulated Annealing," Networks and Spatial Economics, Springer, vol. 13(4), pages 445-470, December.
    18. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    19. Xie, Siyang & Ouyang, Yanfeng, 2019. "Reliable service systems design under the risk of network access failures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 1-13.
    20. Trung Hieu Tran & Thu Ba T. Nguyen, 2019. "Alternative-fuel station network design under impact of station failures," Annals of Operations Research, Springer, vol. 279(1), pages 151-186, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:125-163:10.1007/s10479-012-1146-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.