IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v188y2011i1p343-35810.1007-s10479-009-0519-2.html
   My bibliography  Save this article

A hybrid ACO-GRASP algorithm for clustering analysis

Author

Listed:
  • Yannis Marinakis
  • Magdalene Marinaki
  • Michael Doumpos
  • Nikolaos Matsatsinis
  • Constantin Zopounidis

Abstract

Cluster analysis is an important tool for data exploration and it has been applied in a wide variety of fields like engineering, economics, computer sciences, life and medical sciences, earth sciences and social sciences. The typical cluster analysis consists of four steps (i.e. feature selection or extraction, clustering algorithm design or selection, cluster validation and results interpretation) with feedback pathway. These steps are closely related to each other and affect the derived clusters. In this paper, a new metaheuristic algorithm is proposed for cluster analysis. This algorithm uses an Ant Colony Optimization to feature selection step and a Greedy Randomized Adaptive Search Procedure to clustering algorithm design step. The proposed algorithm has been applied with very good results to many data sets. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Yannis Marinakis & Magdalene Marinaki & Michael Doumpos & Nikolaos Matsatsinis & Constantin Zopounidis, 2011. "A hybrid ACO-GRASP algorithm for clustering analysis," Annals of Operations Research, Springer, vol. 188(1), pages 343-358, August.
  • Handle: RePEc:spr:annopr:v:188:y:2011:i:1:p:343-358:10.1007/s10479-009-0519-2
    DOI: 10.1007/s10479-009-0519-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0519-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0519-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azzag, Hanene & Venturini, Gilles & Oliver, Antoine & Guinot, Christiane, 2007. "A hierarchical ant based clustering algorithm and its use in three real-world applications," European Journal of Operational Research, Elsevier, vol. 179(3), pages 906-922, June.
    2. Paterlini, Sandra & Krink, Thiemo, 2006. "Differential evolution and particle swarm optimisation in partitional clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1220-1247, March.
    3. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behnam Tavakkol & Myong K. Jeong & Susan L. Albin, 2021. "Validity indices for clusters of uncertain data objects," Annals of Operations Research, Springer, vol. 303(1), pages 321-357, August.
    2. Xin Yao & Yuanyuan Cheng & Li Zhou & Malin Song, 2022. "Green efficiency performance analysis of the logistics industry in China: based on a kind of machine learning methods," Annals of Operations Research, Springer, vol. 308(1), pages 727-752, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    2. François Bavaud, 2009. "Aggregation invariance in general clustering approaches," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 205-225, December.
    3. Doumpos, M. & Marinakis, Y. & Marinaki, M. & Zopounidis, C., 2009. "An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method," European Journal of Operational Research, Elsevier, vol. 199(2), pages 496-505, December.
    4. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    5. Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.
    6. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    7. Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
    8. M. Vrac & L. Billard & E. Diday & A. Chédin, 2012. "Copula analysis of mixture models," Computational Statistics, Springer, vol. 27(3), pages 427-457, September.
    9. repec:jss:jstsof:28:i04 is not listed on IDEAS
    10. Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential evolution and combinatorial search for constrained index-tracking," Annals of Operations Research, Springer, vol. 172(1), pages 153-176, November.
    11. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
    13. Yves Grandvalet & Yoshua Bengio, 2004. "Learning from Partial Labels with Minimum Entropy," CIRANO Working Papers 2004s-28, CIRANO.
    14. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    15. Keiji Takai, 2012. "Constrained EM algorithm with projection method," Computational Statistics, Springer, vol. 27(4), pages 701-714, December.
    16. Volodymyr Melnykov & Xuwen Zhu, 2019. "An extension of the K-means algorithm to clustering skewed data," Computational Statistics, Springer, vol. 34(1), pages 373-394, March.
    17. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    18. Bouveyron, Charles & Brunet, Camille, 2012. "Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 29-41.
    19. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    20. Lyra, M. & Paha, J. & Paterlini, S. & Winker, P., 2010. "Optimization heuristics for determining internal rating grading scales," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2693-2706, November.
    21. Kindberg-Hanlon,Gene & Okou,Cedric Iltis Finafa, 2020. "Productivity Convergence : Is Anyone Catching Up?," Policy Research Working Paper Series 9378, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:188:y:2011:i:1:p:343-358:10.1007/s10479-009-0519-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.