IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v150y2007i1p231-24410.1007-s10479-006-0155-z.html
   My bibliography  Save this article

A note on the parametric maximum flow problem and some related reoptimization issues

Author

Listed:
  • Maria Scutellà

Abstract

In this paper, we will extend the results about the parametric maximum flow problem to networks in which the parametrization of the arc capacities can involve both the source and the sink, as in Gallo, Grigoriadis, and Tarjan (1989), and also an additional node. We will show that the minimum cuts of the investigated networks satisfy a relaxed form of the generalized nesting property (Arai, Ueno, and Kajitani, 1993). A consequence is that the corresponding parametric maximum flow value function has at most n −1 breakpoints. All the minimum cut capacities can therefore be computed by O(1) maximum flow computations. We will show then that, given O(n) increasing values of the parameter, it is possible to compute the corresponding maximum flows by O(1) maximum flow computations, by suitably extending Goldberg and Tarjan’s maximum flow algorithm. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Maria Scutellà, 2007. "A note on the parametric maximum flow problem and some related reoptimization issues," Annals of Operations Research, Springer, vol. 150(1), pages 231-244, March.
  • Handle: RePEc:spr:annopr:v:150:y:2007:i:1:p:231-244:10.1007/s10479-006-0155-z
    DOI: 10.1007/s10479-006-0155-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0155-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0155-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Thomas McCormick, 1999. "Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow," Operations Research, INFORMS, vol. 47(5), pages 744-756, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot, 2023. "Max–max, max–min, min–max and min–min knapsack problems with a parametric constraint," 4OR, Springer, vol. 21(2), pages 235-246, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2017. "Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 724-736, November.
    2. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
    3. Klamroth, Kathrin & Wiecek, Margaret M., 2001. "A time-dependent multiple criteria single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 135(1), pages 17-26, November.
    4. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2016. "Application of Submodular Optimization to Single Machine Scheduling with Controllable Processing Times Subject to Release Dates and Deadlines," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 148-161, February.
    5. Shioura, Akiyoshi & Shakhlevich, Natalia V. & Strusevich, Vitaly A., 2018. "Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches," European Journal of Operational Research, Elsevier, vol. 266(3), pages 795-818.
    6. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot, 2023. "Max–max, max–min, min–max and min–min knapsack problems with a parametric constraint," 4OR, Springer, vol. 21(2), pages 235-246, June.
    7. Sedeno-Noda, A. & Alcaide, D. & Gonzalez-Martin, C., 2006. "Network flow approaches to pre-emptive open-shop scheduling problems with time-windows," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1501-1518, November.
    8. Stephan Helfrich & Arne Herzel & Stefan Ruzika & Clemens Thielen, 2022. "An approximation algorithm for a general class of multi-parametric optimization problems," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1459-1494, October.
    9. Sedeño-Noda, A. & de Pablo, D. Alcaide López & González-Martín, C., 2009. "A network flow-based method to solve performance cost and makespan open-shop scheduling problems with time-windows," European Journal of Operational Research, Elsevier, vol. 196(1), pages 140-154, July.
    10. Ilan Adler & Alan L. Erera & Dorit S. Hochbaum & Eli V. Olinick, 2002. "Baseball, Optimization, and the World Wide Web," Interfaces, INFORMS, vol. 32(2), pages 12-22, April.
    11. Russell, Tyrel & van Beek, Peter, 2012. "A hybrid constraint programming and enumeration approach for solving NHL playoff qualification and elimination problems," European Journal of Operational Research, Elsevier, vol. 218(3), pages 819-828.
    12. Cristina Bazgan & Arne Herzel & Stefan Ruzika & Clemens Thielen & Daniel Vanderpooten, 2022. "An approximation algorithm for a general class of parametric optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1328-1358, July.

    More about this item

    Keywords

    Maximum flow; Parametric arc capacity;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:150:y:2007:i:1:p:231-244:10.1007/s10479-006-0155-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.