IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v143y2006i1p305-31510.1007-s10479-006-7390-1.html
   My bibliography  Save this article

Fuzzy linear programs with trapezoidal fuzzy numbers

Author

Listed:
  • K. Ganesan
  • P. Veeramani

Abstract

The objective of this paper is to deal with a kind of fuzzy linear programming problem involving symmetric trapezoidal fuzzy numbers. Some important and interesting results are obtained which in turn lead to a solution of fuzzy linear programming problems without converting them to crisp linear programming problems. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • K. Ganesan & P. Veeramani, 2006. "Fuzzy linear programs with trapezoidal fuzzy numbers," Annals of Operations Research, Springer, vol. 143(1), pages 305-315, March.
  • Handle: RePEc:spr:annopr:v:143:y:2006:i:1:p:305-315:10.1007/s10479-006-7390-1
    DOI: 10.1007/s10479-006-7390-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-7390-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-7390-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Ebrahimnejad & S. H. Nasseri, 2009. "Using complementary slackness property to solve linear programming with fuzzy parameters," Fuzzy Information and Engineering, Springer, vol. 1(3), pages 233-245, September.
    2. S. H. Nasseri & N. Mahdavi-Amiri, 2009. "Some duality results on linear programming problems with symmetric fuzzy numbers," Fuzzy Information and Engineering, Springer, vol. 1(1), pages 59-66, March.
    3. Diptiranjan Behera, 2024. "Solving epistemic uncertainty based optimization problem with crisp coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2130-2140, June.
    4. Reza Ghanbari & Khatere Ghorbani-Moghadam & Nezam Mahdavi-Amiri, 2021. "A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 403-424, June.
    5. Kailash Lachhwani, 2021. "Solving the general fully neutrosophic multi-level multiobjective linear programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1192-1216, December.
    6. Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
    7. Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "A new approach for solving intuitionistic fuzzy transportation problem of type-2," Annals of Operations Research, Springer, vol. 243(1), pages 349-363, August.
    8. Mashadi & Yuliana Safitri & Sukono & Igif Gimin Prihanto & Muhamad Deni Johansyah & Moch Panji Agung Saputra, 2024. "The Inverse and General Inverse of Trapezoidal Fuzzy Numbers with Modified Elementary Row Operations," Mathematics, MDPI, vol. 12(7), pages 1-14, March.
    9. Sukharev, M.G. & Kulik, V.S., 2019. "The impact of information uncertainty on the problems of medium- and long-term planning of the operation modes of gas transport systems," Energy, Elsevier, vol. 184(C), pages 123-128.
    10. Sujit De & Shib Sana, 2015. "Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach," Annals of Operations Research, Springer, vol. 233(1), pages 57-76, October.
    11. Izaz Ullah Khan & Tahir Ahmad & Normah Maan, 2013. "A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 536-546, November.
    12. Anila Gupta & Amit Kumar & Mahesh Kumar Sharma, 2013. "Applications of fuzzy linear programming with generalized LR flat fuzzy parameters," Fuzzy Information and Engineering, Springer, vol. 5(4), pages 475-492, December.
    13. Hossein Abdollahnejad Barough, 2011. "A linear programming priority method for a fuzzy transportation problem with non-linear constraints," Fuzzy Information and Engineering, Springer, vol. 3(2), pages 193-208, June.
    14. Manuel Arana-Jiménez & Carmen Sánchez-Gil, 2020. "On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers," Journal of Global Optimization, Springer, vol. 77(1), pages 27-52, May.
    15. Xiaobin Yang & Haitao Lin & Gang Xiao & Huanbin Xue & Xiaopeng Yang, 2019. "Resolution of Max-Product Fuzzy Relation Equation with Interval-Valued Parameter," Complexity, Hindawi, vol. 2019, pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    2. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    3. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    4. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    5. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    6. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    7. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    8. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    9. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    10. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    11. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    12. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    13. Hsiao, Tzy-yih, 2006. "Establish standards of standard costing with the application of convergent gray zone test," European Journal of Operational Research, Elsevier, vol. 168(2), pages 593-611, January.
    14. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    15. Adel Hatami-Marbini & Madjid Tavana & Kobra Gholami & Zahra Ghelej Beigi, 2015. "A Bounded Data Envelopment Analysis Model in a Fuzzy Environment with an Application to Safety in the Semiconductor Industry," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 679-701, February.
    16. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    17. James Liou & Mei-Ling Chuang, 2010. "Evaluating corporate image and reputation using fuzzy MCDM approach in airline market," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(6), pages 1079-1091, October.
    18. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    19. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    20. Hawaf AbdAlhakim & O. E. Emam & A. A. Abd El-Mageed, 2019. "Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 367-389, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:143:y:2006:i:1:p:305-315:10.1007/s10479-006-7390-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.