IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3898-d1541055.html
   My bibliography  Save this article

Solving a Fully Intuitionistic Fuzzy Transportation Problem Using a Hybrid Multi-Objective Optimization Approach

Author

Listed:
  • Sadegh Niroomand

    (Department of Industrial Engineering, Firouzabad Higher Education Center, Shiraz University of Technology, Shiraz 7155713876, Iran)

  • Tofigh Allahviranloo

    (Research Center of Performance and Productivity Analysis, Istinye University, Istanbul 34010, Turkey
    Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran 1477893780, Iran)

  • Ali Mahmoodirad

    (Department of Mathematics, Babol Branch, Islamic Azad University, Babol 3738147471, Iran)

  • Alireza Amirteimoori

    (Research Center of Performance and Productivity Analysis, Istinye University, Istanbul 34010, Turkey)

  • Leo Mršić

    (Department of Technical Sciences, Algebra University, Gradiscanska 24, 10000 Zagreb, Croatia
    Rudolfovo Science and Technology Centre, Podbreznik 15, 8000 Novo Mesto, Slovenia)

  • Sovan Samanta

    (Research Center of Performance and Productivity Analysis, Istinye University, Istanbul 34010, Turkey
    Department of Technical Sciences, Algebra University, Gradiscanska 24, 10000 Zagreb, Croatia
    Department of Mathematics, Tamralipta Mahavidyalaya, Tamluk 721636, India)

Abstract

In this study, a typical transportation problem involving intuitionistic fuzzy-type variables and parameters is focused on. The approaches proposed in the literature for such transportation problems have many shortcomings, such as the use of ranking functions and obtaining an infeasible solution with negative values for variables and objective functions in the presence of non-negative unit transportation charges. To overcome such weaknesses, a new approach without a ranking function is introduced in this paper. The proposed approach first constructs an equivalent crisp multi-objective form of the intuitionistic fuzzy transportation problem and then proposes a new hybrid multi-objective solution procedure to tackle the obtained crisp multi-objective problem. The conducted computer experiments with benchmark problems from the existing studies of the literature reflect the effectiveness of the proposed solution approach of this study in terms of the quality of the results when compared to the available approaches of the literature.

Suggested Citation

  • Sadegh Niroomand & Tofigh Allahviranloo & Ali Mahmoodirad & Alireza Amirteimoori & Leo Mršić & Sovan Samanta, 2024. "Solving a Fully Intuitionistic Fuzzy Transportation Problem Using a Hybrid Multi-Objective Optimization Approach," Mathematics, MDPI, vol. 12(24), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3898-:d:1541055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. P. Senthil Kumar & R. Jahir Hussain, 2016. "Computationally simple approach for solving fully intuitionistic fuzzy real life transportation problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 90-101, December.
    3. K. Ganesan & P. Veeramani, 2006. "Fuzzy linear programs with trapezoidal fuzzy numbers," Annals of Operations Research, Springer, vol. 143(1), pages 305-315, March.
    4. Marc Asunción & Luis Castillo & Juan Fernández-Olivares & Oscar García-Pérez & Antonio González & Francisco Palao, 2007. "Handling fuzzy temporal constraints in a planning environment," Annals of Operations Research, Springer, vol. 155(1), pages 391-415, November.
    5. Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "A new approach for solving intuitionistic fuzzy transportation problem of type-2," Annals of Operations Research, Springer, vol. 243(1), pages 349-363, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
    2. P. Senthil Kumar, 2020. "Developing a New Approach to Solve Solid Assignment Problems Under Intuitionistic Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 9(1), pages 1-34, January.
    3. Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "A new approach for solving intuitionistic fuzzy transportation problem of type-2," Annals of Operations Research, Springer, vol. 243(1), pages 349-363, August.
    4. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    5. Manuel Arana-Jiménez & Carmen Sánchez-Gil, 2020. "On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers," Journal of Global Optimization, Springer, vol. 77(1), pages 27-52, May.
    6. P. Senthil Kumar, 2019. "PSK Method for Solving Mixed and Type-4 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 10(2), pages 20-53, April.
    7. P. Senthil Kumar, 2018. "Linear Programming Approach for Solving Balanced and Unbalanced Intuitionistic Fuzzy Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(2), pages 73-100, April.
    8. Abdelmalek Ouannou & Adil Brouri & Laila Kadi & Hafid Oubouaddi, 2022. "Identification of switched reluctance machine using fuzzy model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2833-2846, December.
    9. Izaz Ullah Khan & Tahir Ahmad & Normah Maan, 2013. "A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 536-546, November.
    10. P. Senthil Kumar, 2020. "Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 37(3), pages 418-451.
    11. P. Senthil Kumar, 2018. "A note on 'a new approach for solving intuitionistic fuzzy transportation problem of type-2'," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 29(1), pages 102-129.
    12. Sukharev, M.G. & Kulik, V.S., 2019. "The impact of information uncertainty on the problems of medium- and long-term planning of the operation modes of gas transport systems," Energy, Elsevier, vol. 184(C), pages 123-128.
    13. P. Senthil Kumar, 2018. "A Simple and Efficient Algorithm for Solving Type-1 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(3), pages 90-122, July.
    14. Divya Sharma & Dinesh C. S. Bisht & Pankaj Kumar Srivastava, 2024. "Solution of fuzzy transportation problem based upon pentagonal and hexagonal fuzzy numbers," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4348-4354, September.
    15. Priyanka Nagar & Pankaj Kumar Srivastava & Amit Srivastava, 2022. "A new dynamic score function approach to optimize a special class of Pythagorean fuzzy transportation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 904-913, June.
    16. Gourav Gupta & Shivani & Deepika Rani, 2024. "Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1274-1300, September.
    17. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.
    18. Sujit De & Shib Sana, 2015. "Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach," Annals of Operations Research, Springer, vol. 233(1), pages 57-76, October.
    19. Reza Ghanbari & Khatere Ghorbani-Moghadam & Nezam Mahdavi-Amiri, 2021. "A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 403-424, June.
    20. Salma Iqbal & Naveed Yaqoob & Muhammad Gulistan, 2023. "An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems," Mathematics, MDPI, vol. 11(15), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3898-:d:1541055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.