IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v159y2013i2d10.1007_s10957-012-0215-2.html
   My bibliography  Save this article

A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems

Author

Listed:
  • Izaz Ullah Khan

    (COMSATS Institute of IT Abbottabad
    Universiti Teknologi Malaysia)

  • Tahir Ahmad

    (Universiti Teknologi Malaysia)

  • Normah Maan

    (Universiti Teknologi Malaysia)

Abstract

This study proposes a novel technique for solving Linear Programming Problems in a fully fuzzy environment. A modified version of the well-known simplex method is used for solving fuzzy linear programming problems. The use of a ranking function together with the Gaussian elimination process helps in solving linear programming problems in a fully uncertain environment. The proposed algorithm is flexible, easy and reasonable.

Suggested Citation

  • Izaz Ullah Khan & Tahir Ahmad & Normah Maan, 2013. "A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 536-546, November.
  • Handle: RePEc:spr:joptap:v:159:y:2013:i:2:d:10.1007_s10957-012-0215-2
    DOI: 10.1007/s10957-012-0215-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0215-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0215-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. K. Ganesan & P. Veeramani, 2006. "Fuzzy linear programs with trapezoidal fuzzy numbers," Annals of Operations Research, Springer, vol. 143(1), pages 305-315, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hawaf AbdAlhakim & O. E. Emam & A. A. Abd El-Mageed, 2019. "Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 367-389, June.
    2. Arana-Jiménez, Manuel & Blanco, Víctor & Fernández, Elena, 2020. "On the fuzzy maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 283(2), pages 692-705.
    3. Manuel Arana-Jiménez & Carmen Sánchez-Gil, 2020. "On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers," Journal of Global Optimization, Springer, vol. 77(1), pages 27-52, May.
    4. Bogdana Stanojević & Milan Stanojević, 2016. "Parametric computation of a fuzzy set solution to a class of fuzzy linear fractional optimization problems," Fuzzy Optimization and Decision Making, Springer, vol. 15(4), pages 435-455, December.
    5. Hsien-Chung Wu, 2019. "Solving Fuzzy Linear Programming Problems with Fuzzy Decision Variables," Mathematics, MDPI, vol. 7(7), pages 1-105, June.
    6. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    7. Izaz Ullah Khan & Tahir Ahmad & Normah Maan, 2017. "A Reply to a Note on the Paper “A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems”," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 353-356, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Arana-Jiménez & Carmen Sánchez-Gil, 2020. "On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers," Journal of Global Optimization, Springer, vol. 77(1), pages 27-52, May.
    2. Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
    3. Sujit De & Shib Sana, 2015. "Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach," Annals of Operations Research, Springer, vol. 233(1), pages 57-76, October.
    4. Reza Ghanbari & Khatere Ghorbani-Moghadam & Nezam Mahdavi-Amiri, 2021. "A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 403-424, June.
    5. Sukharev, M.G. & Kulik, V.S., 2019. "The impact of information uncertainty on the problems of medium- and long-term planning of the operation modes of gas transport systems," Energy, Elsevier, vol. 184(C), pages 123-128.
    6. Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "A new approach for solving intuitionistic fuzzy transportation problem of type-2," Annals of Operations Research, Springer, vol. 243(1), pages 349-363, August.
    7. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    8. Gourav Gupta & Shivani & Deepika Rani, 2024. "Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1274-1300, September.
    9. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    10. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    11. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    12. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    13. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    14. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    15. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    16. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    17. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    18. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    19. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    20. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:159:y:2013:i:2:d:10.1007_s10957-012-0215-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.