IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v138y2005i1p53-6510.1007-s10479-005-2444-3.html
   My bibliography  Save this article

A Branch-and-Bound Algorithm to Minimize the Makespan in a Flowshop with Blocking

Author

Listed:
  • Débora Ronconi

Abstract

This work addresses the minimization of the makespan criterion for the flowshop problem with blocking. In this environment there are no buffers between successive machines, and therefore intermediate queues of jobs waiting in the system for their next operations are not allowed. We propose a lower bound which exploits the occurrence of blocking. A branch-and-bound algorithm that uses this lower bound is described and its efficiency is evaluated on several problems. Results of computational experiments are reported. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Débora Ronconi, 2005. "A Branch-and-Bound Algorithm to Minimize the Makespan in a Flowshop with Blocking," Annals of Operations Research, Springer, vol. 138(1), pages 53-65, September.
  • Handle: RePEc:spr:annopr:v:138:y:2005:i:1:p:53-65:10.1007/s10479-005-2444-3
    DOI: 10.1007/s10479-005-2444-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-005-2444-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-005-2444-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    2. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
    3. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    4. I.N. Kamal Abadi & Nicholas G. Hall & Chelliah Sriskandarajah, 2000. "Minimizing Cycle Time in a Blocking Flowshop," Operations Research, INFORMS, vol. 48(1), pages 177-180, February.
    5. S. Thomas McCormick & Michael L. Pinedo & Scott Shenker & Barry Wolf, 1989. "Sequencing in an Assembly Line with Blocking to Minimize Cycle Time," Operations Research, INFORMS, vol. 37(6), pages 925-935, December.
    6. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    7. Nowicki, Eugeniusz, 1999. "The permutation flow shop with buffers: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 116(1), pages 205-219, July.
    8. D P Ronconi & V A Armentano, 2001. "Lower bounding schemes for flowshops with blocking in-process," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(11), pages 1289-1297, November.
    9. Caraffa, Vince & Ianes, Stefano & P. Bagchi, Tapan & Sriskandarajah, Chelliah, 2001. "Minimizing makespan in a blocking flowshop using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 70(2), pages 101-115, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
    2. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    3. Said Aqil & Karam Allali, 2021. "On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time," Annals of Operations Research, Springer, vol. 296(1), pages 615-637, January.
    4. Ansis Ozolins, 2019. "Improved bounded dynamic programming algorithm for solving the blocking flow shop problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 15-38, March.
    5. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
    6. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    7. Donald Davendra & Ivan Zelinka & Magdalena Bialic-Davendra & Roman Senkerik & Roman Jasek, 2012. "Clustered enhanced differential evolution for the blocking flow shop scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 679-717, December.
    8. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    9. Nouha Nouri & Talel Ladhari, 2018. "Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking," Annals of Operations Research, Springer, vol. 267(1), pages 413-430, August.
    10. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    11. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    12. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    13. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    14. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    2. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    3. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    4. Grabowski, Jøzef & Pempera, Jaroslaw, 2007. "The permutation flow shop problem with blocking. A tabu search approach," Omega, Elsevier, vol. 35(3), pages 302-311, June.
    5. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
    6. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
    7. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    8. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
    9. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    10. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    11. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    12. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    13. Han, Yuyan & Wang, Yuting & Pan, Quan-ke & Wang, Ling & Tasgetiren, M. Fatih, 2024. "Accelerated evaluation of blocking flowshop scheduling with total flow time criteria using a generalized critical machine-based approach," European Journal of Operational Research, Elsevier, vol. 318(2), pages 424-441.
    14. Donald Davendra & Ivan Zelinka & Magdalena Bialic-Davendra & Roman Senkerik & Roman Jasek, 2012. "Clustered enhanced differential evolution for the blocking flow shop scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 679-717, December.
    15. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.
    16. Nouha Nouri & Talel Ladhari, 2018. "Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking," Annals of Operations Research, Springer, vol. 267(1), pages 413-430, August.
    17. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    18. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    19. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    20. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:138:y:2005:i:1:p:53-65:10.1007/s10479-005-2444-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.