IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v107y2023i1d10.1007_s10182-021-00416-6.html
   My bibliography  Save this article

The Probabilistic Final Standing Calculator: a fair stochastic tool to handle abruptly stopped football seasons

Author

Listed:
  • Hans Eetvelde

    (Ghent University)

  • Lars Magnus Hvattum

    (Molde University College, Faculty of Logistics)

  • Christophe Ley

    (Ghent University)

Abstract

The COVID-19 pandemic has left its marks in the sports world, forcing the full stop of all sports-related activities in the first half of 2020. Football leagues were suddenly stopped, and each country was hesitating between a relaunch of the competition and a premature ending. Some opted for the latter option and took as the final standing of the season the ranking from the moment the competition got interrupted. This decision has been perceived as unfair, especially by those teams who had remaining matches against easier opponents. In this paper, we introduce a tool to calculate in a fairer way the final standings of domestic leagues that have to stop prematurely: our Probabilistic Final Standing Calculator (PFSC). It is based on a stochastic model taking into account the results of the matches played and simulating the remaining matches, yielding the probabilities for the various possible final rankings. We have compared our PFSC with state-of-the-art prediction models, using previous seasons which we pretend to stop at different points in time. We illustrate our PFSC by showing how a probabilistic ranking of the French Ligue 1 in the stopped 2019–2020 season could have led to alternative, potentially fairer, decisions on the final standing.

Suggested Citation

  • Hans Eetvelde & Lars Magnus Hvattum & Christophe Ley, 2023. "The Probabilistic Final Standing Calculator: a fair stochastic tool to handle abruptly stopped football seasons," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 251-269, March.
  • Handle: RePEc:spr:alstar:v:107:y:2023:i:1:d:10.1007_s10182-021-00416-6
    DOI: 10.1007/s10182-021-00416-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00416-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00416-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
    2. Fischer, Kai & Haucap, Justus, 2020. "Does crowd support drive the home advantage in professional soccer? Evidence from German ghost games during the COVID-19 pandemic," DICE Discussion Papers 344, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. M. J. Maher, 1982. "Modelling association football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 36(3), pages 109-118, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
    2. Wheatcroft Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 273-287, December.
    3. Wheatcroft, Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," LSE Research Online Documents on Economics 111494, London School of Economics and Political Science, LSE Library.
    4. Groll Andreas & Kneib Thomas & Mayr Andreas & Schauberger Gunther, 2018. "On the dependency of soccer scores – a sparse bivariate Poisson model for the UEFA European football championship 2016," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(2), pages 65-79, June.
    5. Szczecinski Leszek, 2022. "G-Elo: generalization of the Elo algorithm by modeling the discretized margin of victory," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 18(1), pages 1-14, March.
    6. Koopman, Siem Jan & Lit, Rutger, 2019. "Forecasting football match results in national league competitions using score-driven time series models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
    7. Gross, Johannes & Rebeggiani, Luca, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," MPRA Paper 87230, University Library of Munich, Germany.
    8. Chia-Hao Chang, 2021. "Construction of a Predictive Model for MLB Matches," Forecasting, MDPI, vol. 3(1), pages 1-11, February.
    9. Zachary J. Smith & J. Eric Bickel, 2020. "Additive Scoring Rules for Discrete Sample Spaces," Decision Analysis, INFORMS, vol. 17(2), pages 115-133, June.
    10. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    11. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    12. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    13. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    14. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    15. Mauro Caselli & Paolo Falco, 2021. "When the Mob Goes Silent: Uncovering the Effects of Racial Harassment through a Natural Experiment," DEM Working Papers 2021/01, Department of Economics and Management.
    16. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    18. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    19. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    20. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:107:y:2023:i:1:d:10.1007_s10182-021-00416-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.