Visualizing the decision rules behind the ROC curves: understanding the classification process
Author
Abstract
Suggested Citation
DOI: 10.1007/s10182-020-00385-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baojiang Chen & Pengfei Li & Jing Qin & Tao Yu, 2016. "Using a Monotonic Density Ratio Model to Find the Asymptotically Optimal Combination of Multiple Diagnostic Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 861-874, April.
- Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
- Donna Katzman McClish & Stephen H. Powell, 1989. "How Well Can Physicians Estimate Mortality in a Medical Intensive Care Unit?," Medical Decision Making, , vol. 9(2), pages 125-132, June.
- Martin W. McIntosh & Margaret Sullivan Pepe, 2002. "Combining Several Screening Tests: Optimality of the Risk Score," Biometrics, The International Biometric Society, vol. 58(3), pages 657-664, September.
- Heikki Kauppi, 2016. "The Generalized Receiver Operating Characteristic Curve," Discussion Papers 114, Aboa Centre for Economics.
- Nielsen, Jens D. & Rumí, Rafael & Salmerón, Antonio, 2009. "Supervised classification using probabilistic decision graphs," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1299-1311, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
- Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
- Pablo Martínez-Camblor & Sonia Pérez-Fernández & Susana Díaz-Coto, 2021. "Optimal classification scores based on multivariate marker transformations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 581-599, December.
- Weining Shen & Jing Ning & Ying Yuan & Anna S. Lok & Ziding Feng, 2018. "Model†free scoring system for risk prediction with application to hepatocellular carcinoma study," Biometrics, The International Biometric Society, vol. 74(1), pages 239-248, March.
- Chiang, Chin-Tsang & Chiu, Chih-Heng, 2012. "Nonparametric and semiparametric optimal transformations of markers," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 124-141, January.
- Yanqing Wang & Ying‐Qi Zhao & Yingye Zheng, 2020. "Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint," Biometrics, The International Biometric Society, vol. 76(3), pages 853-862, September.
- Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
- Qing Lu & Nancy Obuchowski & Sungho Won & Xiaofeng Zhu & Robert C. Elston, 2010. "Using the Optimal Robust Receiver Operating Characteristic (ROC) Curve for Predictive Genetic Tests," Biometrics, The International Biometric Society, vol. 66(2), pages 586-593, June.
- Yuxin Zhu & Mei‐Cheng Wang, 2022. "Obtaining optimal cutoff values for tree classifiers using multiple biomarkers," Biometrics, The International Biometric Society, vol. 78(1), pages 128-140, March.
- Zhang Zhiwei & Ma Shujie & Nie Lei & Soon Guoxing, 2017. "A Quantitative Concordance Measure for Comparing and Combining Treatment Selection Markers," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-24, May.
- Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
- Jin, Hua & Lu, Ying, 2009. "Permutation test for non-inferiority of the linear to the optimal combination of multiple tests," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 664-669, March.
- Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
- Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
- Holly Janes & Margaret S. Pepe, 2008. "Matching in Studies of Classification Accuracy: Implications for Analysis, Efficiency, and Assessment of Incremental Value," Biometrics, The International Biometric Society, vol. 64(1), pages 1-9, March.
- Xin Huang & Gengsheng Qin & Yixin Fang, 2011. "Optimal Combinations of Diagnostic Tests Based on AUC," Biometrics, The International Biometric Society, vol. 67(2), pages 568-576, June.
- Carol Y. Lin & Lance A. Waller & Robert H. Lyles, 2012. "The likelihood approach for the comparison of medical diagnostic system with multiple binary tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1437-1454, December.
- Yuanjia Wang & Huaihou Chen & Runze Li & Naihua Duan & Roberto Lewis-Fernández, 2011. "Prediction-Based Structured Variable Selection through the Receiver Operating Characteristic Curves," Biometrics, The International Biometric Society, vol. 67(3), pages 896-905, September.
- Debashis Ghosh & Moulinath Banerjee & Pinaki Biswas, 2004. "Binary isotonic regression procedures, with application to cancer biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1037, Berkeley Electronic Press.
- Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
More about this item
Keywords
Area under the curve; Classification regions; Graphical animations; Multivariate marker; Receiver operating characteristic curve;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:1:d:10.1007_s10182-020-00385-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.