IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p861-874.html
   My bibliography  Save this article

Using a Monotonic Density Ratio Model to Find the Asymptotically Optimal Combination of Multiple Diagnostic Tests

Author

Listed:
  • Baojiang Chen
  • Pengfei Li
  • Jing Qin
  • Tao Yu

Abstract

With the advent of new technology, new biomarker studies have become essential in cancer research. To achieve optimal sensitivity and specificity, one needs to combine different diagnostic tests. The celebrated Neyman–Pearson lemma enables us to use the density ratio to optimally combine different diagnostic tests. In this article, we propose a semiparametric model by directly modeling the density ratio between the diseased and nondiseased population as an unspecified monotonic nondecreasing function of a linear or nonlinear combination of multiple diagnostic tests. This method is appealing in that it is not necessary to assume separate models for the diseased and nondiseased populations. Further, the proposed method provides an asymptotically optimal way to combine multiple test results. We use a pool-adjacent-violation-algorithm to find the semiparametric maximum likelihood estimate of the receiver operating characteristic (ROC) curve. Using modern empirical process theory we show cubic root n consistency for the ROC curve and the underlying Euclidean parameter estimation. Extensive simulations show that the proposed method outperforms its competitors. We apply the method to two real-data applications. Supplementary materials for this article are available online.

Suggested Citation

  • Baojiang Chen & Pengfei Li & Jing Qin & Tao Yu, 2016. "Using a Monotonic Density Ratio Model to Find the Asymptotically Optimal Combination of Multiple Diagnostic Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 861-874, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:861-874
    DOI: 10.1080/01621459.2015.1066681
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1066681
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1066681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonia Pérez-Fernández & Pablo Martínez-Camblor & Peter Filzmoser & Norberto Corral, 2021. "Visualizing the decision rules behind the ROC curves: understanding the classification process," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 135-161, March.
    2. Pablo Martínez-Camblor & Sonia Pérez-Fernández & Susana Díaz-Coto, 2021. "Optimal classification scores based on multivariate marker transformations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 581-599, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:861-874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.