IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i3d10.1007_s10463-022-00852-4.html
   My bibliography  Save this article

Robust estimation for nonrandomly distributed data

Author

Listed:
  • Shaomin Li

    (Beijing Normal University)

  • Kangning Wang

    (Shandong Technology and Business University)

  • Yong Xu

    (Shandong Technology and Business University)

Abstract

In recent years, many methodologies for distributed data have been developed. However, there are two problems. First, most of these methods require the data to be randomly and uniformly distributed across different machines. Second, the methods are mainly not robust. To solve these problems, we propose a distributed pilot modal regression estimator, which achieves robustness and can adapt when the data are stored nonrandomly. First, we collect a random pilot sample from different machines; then, we approximate the global MR objective function by a communication-efficient surrogate that can be efficiently evaluated by the pilot sample and the local gradients. The final estimator is obtained by minimizing the surrogate function in the master machine, while the other machines only need to calculate their gradients. Theoretical results show the new estimator is asymptotically efficient as the global MR estimator. Simulation studies illustrate the utility of the proposed approach.

Suggested Citation

  • Shaomin Li & Kangning Wang & Yong Xu, 2023. "Robust estimation for nonrandomly distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 493-509, June.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:3:d:10.1007_s10463-022-00852-4
    DOI: 10.1007/s10463-022-00852-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00852-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00852-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    2. Weixin Yao & Bruce Lindsay & Runze Li, 2012. "Local modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 647-663.
    3. Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
    4. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    5. Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
    6. Weixin Yao & Longhai Li, 2014. "A New Regression Model: Modal Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 656-671, September.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García Vázquez, C.A. & Cotfas, D.T. & González Santos, A.I. & Cotfas, P.A. & León Ávila, B.Y., 2024. "Reduction of electricity consumption in an AHU using mathematical modelling for controller tuning," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    2. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    4. Ullah, Aman & Wang, Tao & Yao, Weixin, 2023. "Semiparametric partially linear varying coefficient modal regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
    5. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    6. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    7. Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
    8. Yen-Chi Chen, 2017. "Modal Regression using Kernel Density Estimation: a Review," Papers 1710.07004, arXiv.org, revised Dec 2017.
    9. Yaohong Yang & Lei Wang, 2023. "Communication-efficient sparse composite quantile regression for distributed data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 261-283, April.
    10. Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
    11. Lv, Zhike & Zhu, Huiming & Yu, Keming, 2014. "Robust variable selection for nonlinear models with diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 90-97.
    12. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    13. Zhe Sun & Yundong Tu, 2024. "Factors in Fashion: Factor Analysis towards the Mode," Papers 2409.19287, arXiv.org.
    14. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
    15. Jiaming Luan & Hongwei Wang & Kangning Wang & Benle Zhang, 2022. "Robust distributed estimation and variable selection for massive datasets via rank regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 435-450, June.
    16. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    17. Aman Ullah & Tao Wang & Weixin Yao, 2021. "Modal regression for fixed effects panel data," Empirical Economics, Springer, vol. 60(1), pages 261-308, January.
    18. Aman Ullah & Tao Wang & Weixin Yao, 2022. "Nonlinear modal regression for dependent data with application for predicting COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1424-1453, July.
    19. Yang, Yaohong & Wang, Lei & Liu, Jiamin & Li, Rui & Lian, Heng, 2023. "Communication-efficient estimation of quantile matrix regression for massive datasets," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    20. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:3:d:10.1007_s10463-022-00852-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.