IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i5p1179-1189.html
   My bibliography  Save this article

Nonparametric Berkson regression under normal measurement error and bounded design

Author

Listed:
  • Meister, Alexander

Abstract

Regression data often suffer from the so-called Berkson measurement error which contaminates the design variables. Conventional nonparametric approaches to this errors-in-variables problem usually require rather strong conditions on the support of the design density and that of the contaminated regression function, which seem unrealistic in many cases. In the current note, we introduce a novel nonparametric regression estimator, which is able to identify the regression function on the whole real line under normal Berkson error although the location of the design variables is restricted to some bounded interval. The asymptotic properties of this estimator are investigated and some numerical simulations are provided.

Suggested Citation

  • Meister, Alexander, 2010. "Nonparametric Berkson regression under normal measurement error and bounded design," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1179-1189, May.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:5:p:1179-1189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00201-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
    2. Aurore Delaigle & Peter Hall & Peihua Qiu, 2006. "Nonparametric methods for solving the Berkson errors‐in‐variables problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 201-220, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katharina Proksch & Nicolai Bissantz & Hajo Holzmann, 2022. "Simultaneous inference for Berkson errors-in-variables regression under fixed design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 773-800, August.
    2. Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2020. "Nonparametric regression estimate with Berkson Laplace measurement error," Statistics & Probability Letters, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katharina Proksch & Nicolai Bissantz & Hajo Holzmann, 2022. "Simultaneous inference for Berkson errors-in-variables regression under fixed design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 773-800, August.
    2. Yin, Zanhua & Gao, Wei & Tang, Man-Lai & Tian, Guo-Liang, 2013. "Estimation of nonparametric regression models with a mixture of Berkson and classical errors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1151-1162.
    3. Susanne M. Schennach, 2013. "Regressions with Berkson errors in covariates - A nonparametric approach," Papers 1308.2836, arXiv.org.
    4. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    5. Marcus Groß, 2016. "Modeling body height in prehistory using a spatio-temporal Bayesian errors-in variables model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 289-311, July.
    6. Huijun Guo & Youming Liu, 2019. "Regression estimation under strong mixing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 553-576, June.
    7. Marco Di Marzio & Stefania Fensore & Charles C. Taylor, 2023. "Kernel regression for errors-in-variables problems in the circular domain," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1217-1237, October.
    8. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    9. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    10. Guo, Linruo & Song, Weixing & Shi, Jianhong, 2022. "Estimating multivariate density and its derivatives for mixed measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    11. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    12. Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2020. "Nonparametric regression estimate with Berkson Laplace measurement error," Statistics & Probability Letters, Elsevier, vol. 166(C).
    13. Cao Xuan Phuong & Le Thi Hong Thuy & Vo Nguyen Tuyet Doan, 2022. "Nonparametric estimation of cumulative distribution function from noisy data in the presence of Berkson and classical errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 289-322, April.
    14. Huijun Guo & Youming Liu, 2017. "Strong consistency of wavelet estimators for errors-in-variables regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 121-144, February.
    15. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
    16. Jurecková, Jana & Picek, Jan & Saleh, A.K.Md. Ehsanes, 2010. "Rank tests and regression rank score tests in measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3108-3120, December.
    17. Taraneh Abarin & Liqun Wang, 2012. "Instrumental variable approach to covariate measurement error in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 475-493, June.
    18. Cornelis J. Potgieter & Rubin Wei & Victor Kipnis & Laurence S. Freedman & Raymond J. Carroll, 2016. "Moment reconstruction and moment‐adjusted imputation when exposure is generated by a complex, nonlinear random effects modeling process," Biometrics, The International Biometric Society, vol. 72(4), pages 1369-1377, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:5:p:1179-1189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.