IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i6d10.1007_s10463-019-00729-z.html
   My bibliography  Save this article

An optimal test for the additive model with discrete or categorical predictors

Author

Listed:
  • Abhijit Mandal

    (Wayne State University)

Abstract

In multivariate nonparametric regression, the additive models are very useful when a suitable parametric model is difficult to find. The backfitting algorithm is a powerful tool to estimate the additive components. However, due to complexity of the estimators, the asymptotic p value of the associated test is difficult to calculate without a Monte Carlo simulation. Moreover, the conventional tests assume that the predictor variables are strictly continuous. In this paper, a new test is introduced for the additive components with discrete or categorical predictors, where the model may contain continuous covariates. This method is also applied to the semiparametric regression to test the goodness of fit of the model. These tests are asymptotically optimal in terms of the rate of convergence, as they can detect a specific class of contiguous alternatives at a rate of $$n^{-1/2}$$ n - 1 / 2 . An extensive simulation study and a real data example are presented to support the theoretical results.

Suggested Citation

  • Abhijit Mandal, 2020. "An optimal test for the additive model with discrete or categorical predictors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1397-1417, December.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:6:d:10.1007_s10463-019-00729-z
    DOI: 10.1007/s10463-019-00729-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00729-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00729-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    2. Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
    3. Wand, M. P., 1999. "A Central Limit Theorem for Local Polynomial Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 57-65, July.
    4. Fan, Jianqing & Jiang, Jiancheng, 2005. "Nonparametric Inferences for Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 890-907, September.
    5. Sperlich, Stefan & Tjøstheim, Dag & Yang, Lijian, 2002. "Nonparametric Estimation And Testing Of Interaction In Additive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 197-251, April.
    6. Robert B. Davies, 1980. "The Distribution of a Linear Combination of χ2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 323-333, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    3. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    4. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    5. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.
    6. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    7. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
    8. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    9. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    10. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    11. Chuan-hua Wei & Chunling Liu, 2012. "Statistical inference on semi-parametric partial linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 809-823, December.
    12. Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
    13. Chuanhua Wei & Yubo Luo & Xizhi Wu, 2012. "Empirical likelihood for partially linear additive errors-in-variables models," Statistical Papers, Springer, vol. 53(2), pages 485-496, May.
    14. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11979, University Library of Munich, Germany, revised Jul 2005.
    15. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    16. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    17. Hao Dong & Taisuke Otsu & Luke Taylor, 2022. "Nonparametric estimation of additive models with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 41(10), pages 1164-1204, November.
    18. Roca-Pardinas, Javier & Cadarso-Suarez, Carmen & Tahoces, Pablo G. & Lado, Maria J., 2008. "Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1958-1970, January.
    19. Stefan Profit & Stefan Sperlich, 2004. "Non-uniformity of job-matching in a transition economy - A nonparametric analysis for the Czech Republic," Applied Economics, Taylor & Francis Journals, vol. 36(7), pages 695-714.
    20. Schimek, Michael G. & Turlach, Berwin A., 1998. "Additive and generalized additive models: A survey," SFB 373 Discussion Papers 1998,97, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:6:d:10.1007_s10463-019-00729-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.