IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v73y2000i2p166-179.html
   My bibliography  Save this article

Asymptotic Properties of Backfitting Estimators

Author

Listed:
  • Opsomer, Jean D.

Abstract

When additive models with more than two covariates are fitted with the backfitting algorithm proposed by Buja et al. [2], the lack of explicit expressions for the estimators makes study of their theoretical properties cumbersome. Recursion provides a convenient way to extend existing theoretical results for bivariate additive models to models of arbitrary dimension. In the case of local polynomial regression smoothers, recursive asymptotic bias and variance expressions for the backfitting estimators are derived. The estimators are shown to achieve the same rate of convergence as those of univariate local polynomial regression. In the case of independence between the covariates, non-recursive bias and variance expressions, as well as the asymptotically optimal values for the bandwidth parameters, are provided.

Suggested Citation

  • Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
  • Handle: RePEc:eee:jmvana:v:73:y:2000:i:2:p:166-179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91868-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Härdle & P. Hall, 1993. "On the backfitting algorithm for additive regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 47(1), pages 43-57, March.
    2. Opsomer, Jan & Ruppert, David, 1997. "Fitting a Bivariate Additive Model by Local Polynomial Regression," Staff General Research Papers Archive 1071, Iowa State University, Department of Economics.
    3. Opsomer, Jean D. & Ruppert, D., 1998. "A Fully Automated Bandwidth Selection Method for Fitting Additive Models," Staff General Research Papers Archive 1176, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegland, Markus & McIntosh, Ian & Turlach, Berwin A., 1999. "A parallel solver for generalised additive models," Computational Statistics & Data Analysis, Elsevier, vol. 31(4), pages 377-396, October.
    2. Chesneau, Christophe & Fadili, Jalal & Maillot, Bertrand, 2015. "Adaptive estimation of an additive regression function from weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 77-94.
    3. Kang, Yicheng & Shi, Yueyong & Jiao, Yuling & Li, Wendong & Xiang, Dongdong, 2021. "Fitting jump additive models," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    4. da Silva, Fernando A. Boeira Sabino, 2002. "Additive nonparametric regression estimation via backfitting and marginal integration: Small sample performance," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 22(2), November.
    5. Cheng, Suli & Chen, Jianbao, 2023. "GMM estimation of partially linear additive spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    6. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    8. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    9. Linton, Oliver & Mammen, Enno & Nielsen, Jans Perch & Tanggaard, Carsten, 2001. "Yield curve estimation by kernel smoothing methods," Journal of Econometrics, Elsevier, vol. 105(1), pages 185-223, November.
    10. Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
    11. Bin, Okmyung, 2004. "A prediction comparison of housing sales prices by parametric versus semi-parametric regressions," Journal of Housing Economics, Elsevier, vol. 13(1), pages 68-84, March.
    12. Xia Cui & Heng Peng & Songqiao Wen & Lixing Zhu, 2013. "Component Selection in the Additive Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 491-510, September.
    13. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    14. Lin, Huazhen & Pan, Lixian & Lv, Shaogao & Zhang, Wenyang, 2018. "Efficient estimation and computation for the generalised additive models with unknown link function," Journal of Econometrics, Elsevier, vol. 202(2), pages 230-244.
    15. Claeskens, Gerda & Aerts, Marc, 2000. "On local estimating equations in additive multiparameter models," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 139-148, August.
    16. Juhyun Park & Burkhardt Seifert, 2010. "Local additive estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 171-191, March.
    17. Jianbao Chen & Suli Cheng, 2021. "GMM Estimation of a Partially Linear Additive Spatial Error Model," Mathematics, MDPI, vol. 9(6), pages 1-28, March.
    18. Hengartner, Nicolas W. & Sperlich, Stefan, 2005. "Rate optimal estimation with the integration method in the presence of many covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 246-272, August.
    19. Sally W. Thurston & M. P. Wand & John K. Wiencke, 2000. "Negative Binomial Additive Models," Biometrics, The International Biometric Society, vol. 56(1), pages 139-144, March.
    20. David Conde & Miguel A. Fernández & Cristina Rueda & Bonifacio Salvador, 2021. "Isotonic boosting classification rules," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 289-313, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:73:y:2000:i:2:p:166-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.