IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v70y1999i1p57-65.html
   My bibliography  Save this article

A Central Limit Theorem for Local Polynomial Backfitting Estimators

Author

Listed:
  • Wand, M. P.

Abstract

Additive models based on backfitting estimators are among the most important recent contributions to modern statistical modelling. However, the statistical properties of backfitting estimators have received relatively little attention. Recently, J.-D. Opsomer and D. Ruppert (1997,Ann. Statist.25, 186-211; 1998,J. Amer. Statist. Assoc.93, 605-619) and J.-D. Opsomer (1997, preprint 96-12, Department of statistics, Iowa State University) derived their mean squared error properties in the case of local polynomial smoothers. In this paper the asymptotic distributional behaviour of backfitting estimators is investigated.

Suggested Citation

  • Wand, M. P., 1999. "A Central Limit Theorem for Local Polynomial Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 57-65, July.
  • Handle: RePEc:eee:jmvana:v:70:y:1999:i:1:p:57-65
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91812-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chunming & Li, Jialiang & Meng, Jingci, 2008. "On Stein's lemma, dependent covariates and functional monotonicity in multi-dimensional modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2285-2303, November.
    2. Cai, Zongwu & Fan, Jianqing, 2000. "Average Regression Surface for Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 112-142, October.
    3. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    4. Graciela Boente & Alejandra Martínez & Matías Salibián-Barrera, 2017. "Robust estimators for additive models using backfitting," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 744-767, October.
    5. Abhijit Mandal, 2020. "An optimal test for the additive model with discrete or categorical predictors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1397-1417, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:70:y:1999:i:1:p:57-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.