IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v71y2019i1d10.1007_s10463-017-0627-8.html
   My bibliography  Save this article

On estimation of surrogate models for multivariate computer experiments

Author

Listed:
  • Benedikt Bauer

    (Technische Universität Darmstadt)

  • Felix Heimrich

    (Technische Universität Darmstadt)

  • Michael Kohler

    (Technische Universität Darmstadt)

  • Adam Krzyżak

    (Concordia University)

Abstract

Estimation of surrogate models for computer experiments leads to nonparametric regression estimation problems without noise in the dependent variable. In this paper, we propose an empirical maximal deviation minimization principle to construct estimates in this context and analyze the rate of convergence of corresponding quantile estimates. As an application, we consider estimation of computer experiments with moderately high dimension by neural networks and show that here we can circumvent the so-called curse of dimensionality by imposing rather general assumptions on the structure of the regression function. The estimates are illustrated by applying them to simulated data and to a simulation model in mechanical engineering.

Suggested Citation

  • Benedikt Bauer & Felix Heimrich & Michael Kohler & Adam Krzyżak, 2019. "On estimation of surrogate models for multivariate computer experiments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 107-136, February.
  • Handle: RePEc:spr:aistmt:v:71:y:2019:i:1:d:10.1007_s10463-017-0627-8
    DOI: 10.1007/s10463-017-0627-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-017-0627-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-017-0627-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohler, Michael & Krzyżak, Adam, 2013. "Optimal global rates of convergence for interpolation problems with random design," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1871-1879.
    2. Kohler, Michael, 2014. "Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 197-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plassier, Vincent & Portier, François & Segers, Johan, 2020. "Risk bounds when learning infinitely many response functions by ordinary linear regression," LIDAM Discussion Papers ISBA 2020019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Benedikt & Devroye, Luc & Kohler, Michael & Krzyżak, Adam & Walk, Harro, 2017. "Nonparametric estimation of a function from noiseless observations at random points," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 93-104.
    2. Christian Bender & Nikolaus Schweizer, 2019. "`Regression Anytime' with Brute-Force SVD Truncation," Papers 1908.08264, arXiv.org, revised Oct 2020.
    3. Michael Kohler & Adam Krzyżak & Reinhard Tent & Harro Walk, 2018. "Nonparametric quantile estimation using importance sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 439-465, April.
    4. Leluc, Rémi & Portier, François & Zhuman, Aigerim & Segers, Johan, 2023. "Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence," LIDAM Discussion Papers ISBA 2023019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Ann-Kathrin Bott & Tina Felber & Michael Kohler, 2015. "Estimation of a density in a simulation model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 271-285, September.
    6. Kohler, Michael, 2014. "Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 197-208.
    7. Kohler, Michael & Krzyżak, Adam & Walk, Harro, 2014. "Nonparametric recursive quantile estimation," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 102-107.
    8. Langer, Sophie, 2021. "Approximating smooth functions by deep neural networks with sigmoid activation function," Journal of Multivariate Analysis, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:71:y:2019:i:1:d:10.1007_s10463-017-0627-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.