IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v27y2015i3p271-285.html
   My bibliography  Save this article

Estimation of a density in a simulation model

Author

Listed:
  • Ann-Kathrin Bott
  • Tina Felber
  • Michael Kohler

Abstract

The problem of estimating density in a simulation model is considered. Given a value of an -valued random input parameter X , the value of a real-valued random variable is computed. Here is a function which measures the quality of a technical system with input X . It is assumed that X and Y have densities. Given a sample of , the task is to estimate the density of Y . In a first step we estimate m and the density of X . Using these estimators we compute in a second step an estimator of the density of Y . Results concerning the -consistency and the rate of convergence are proven and the finite sample behaviour of the estimators is illustrated by applying them to simulated and real data.

Suggested Citation

  • Ann-Kathrin Bott & Tina Felber & Michael Kohler, 2015. "Estimation of a density in a simulation model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 271-285, September.
  • Handle: RePEc:taf:gnstxx:v:27:y:2015:i:3:p:271-285
    DOI: 10.1080/10485252.2015.1049601
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2015.1049601
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2015.1049601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohler, Michael & Krzyżak, Adam, 2013. "Optimal global rates of convergence for interpolation problems with random design," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1871-1879.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ann-Kathrin Bott & Michael Kohler, 2017. "Nonparametric estimation of a conditional density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 189-214, February.
    2. Benedict Götz & Sebastian Kersting & Michael Kohler, 2021. "Estimation of an improved surrogate model in uncertainty quantification by neural networks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 249-281, April.
    3. Michael Kohler & Adam Krzyżak, 2020. "Estimating quantiles in imperfect simulation models using conditional density estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 123-155, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leluc, Rémi & Portier, François & Zhuman, Aigerim & Segers, Johan, 2023. "Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence," LIDAM Discussion Papers ISBA 2023019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Kohler, Michael & Krzyżak, Adam & Walk, Harro, 2014. "Nonparametric recursive quantile estimation," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 102-107.
    3. Bauer, Benedikt & Devroye, Luc & Kohler, Michael & Krzyżak, Adam & Walk, Harro, 2017. "Nonparametric estimation of a function from noiseless observations at random points," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 93-104.
    4. Christian Bender & Nikolaus Schweizer, 2019. "`Regression Anytime' with Brute-Force SVD Truncation," Papers 1908.08264, arXiv.org, revised Oct 2020.
    5. Kohler, Michael, 2014. "Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 197-208.
    6. Benedikt Bauer & Felix Heimrich & Michael Kohler & Adam Krzyżak, 2019. "On estimation of surrogate models for multivariate computer experiments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 107-136, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:27:y:2015:i:3:p:271-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.