IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v160y2017icp93-104.html
   My bibliography  Save this article

Nonparametric estimation of a function from noiseless observations at random points

Author

Listed:
  • Bauer, Benedikt
  • Devroye, Luc
  • Kohler, Michael
  • Krzyżak, Adam
  • Walk, Harro

Abstract

In this paper we study the problem of estimating a function from n noiseless observations of function values at randomly chosen points. These points are independent copies of a random variable whose density is bounded away from zero on the unit cube and vanishes outside. The function to be estimated is assumed to be (p,C)-smooth, i.e., (roughly speaking) it is p times continuously differentiable. Our main results are that the supremum norm error of a suitably defined spline estimate is bounded in probability by {ln(n)∕n}p∕d for arbitrary p and d and that this rate of convergence is optimal in minimax sense.

Suggested Citation

  • Bauer, Benedikt & Devroye, Luc & Kohler, Michael & Krzyżak, Adam & Walk, Harro, 2017. "Nonparametric estimation of a function from noiseless observations at random points," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 93-104.
  • Handle: RePEc:eee:jmvana:v:160:y:2017:i:c:p:93-104
    DOI: 10.1016/j.jmva.2017.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1730338X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohler, Michael & Krzyżak, Adam, 2013. "Optimal global rates of convergence for interpolation problems with random design," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1871-1879.
    2. Joldes, Grand Roman & Chowdhury, Habibullah Amin & Wittek, Adam & Doyle, Barry & Miller, Karol, 2015. "Modified moving least squares with polynomial bases for scattered data approximation," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 893-902.
    3. Kohler, Michael, 2014. "Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 197-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Bender & Nikolaus Schweizer, 2019. "`Regression Anytime' with Brute-Force SVD Truncation," Papers 1908.08264, arXiv.org, revised Oct 2020.
    2. Michael Kohler & Adam Krzyżak, 2020. "Estimating quantiles in imperfect simulation models using conditional density estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 123-155, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedikt Bauer & Felix Heimrich & Michael Kohler & Adam Krzyżak, 2019. "On estimation of surrogate models for multivariate computer experiments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 107-136, February.
    2. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    3. Hongtao Yang & Hao Wang & Bo Li, 2024. "Analysis of Meshfree Galerkin Methods Based on Moving Least Squares and Local Maximum-Entropy Approximation Schemes," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    4. Michael Kohler & Adam Krzyżak & Reinhard Tent & Harro Walk, 2018. "Nonparametric quantile estimation using importance sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 439-465, April.
    5. Leluc, Rémi & Portier, François & Zhuman, Aigerim & Segers, Johan, 2023. "Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence," LIDAM Discussion Papers ISBA 2023019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Ann-Kathrin Bott & Tina Felber & Michael Kohler, 2015. "Estimation of a density in a simulation model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 271-285, September.
    7. Francomano, Elisa & Hilker, Frank M. & Paliaga, Marta & Venturino, Ezio, 2018. "Separatrix reconstruction to identify tipping points in an eco-epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 80-91.
    8. Kohler, Michael & Krzyżak, Adam & Walk, Harro, 2014. "Nonparametric recursive quantile estimation," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 102-107.
    9. Mustafa, Ghulam & Hameed, Rabia, 2019. "Families of non-linear subdivision schemes for scattered data fitting and their non-tensor product extensions," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 214-240.
    10. Christian Bender & Nikolaus Schweizer, 2019. "`Regression Anytime' with Brute-Force SVD Truncation," Papers 1908.08264, arXiv.org, revised Oct 2020.
    11. Kohler, Michael, 2014. "Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 197-208.
    12. Langer, Sophie, 2021. "Approximating smooth functions by deep neural networks with sigmoid activation function," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    13. Wang, Qiao & Zhou, Wei & Feng, Y.T. & Ma, Gang & Cheng, Yonggang & Chang, Xiaolin, 2019. "An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 347-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:160:y:2017:i:c:p:93-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.