IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v67y2015i1p157-176.html
   My bibliography  Save this article

On the convergence and consistency of the blurring mean-shift process

Author

Listed:
  • Ting-Li Chen

Abstract

The mean-shift algorithm is a popular algorithm in computer vision and image processing. It can also be cast as a minimum gamma-divergence estimation. In this paper we focus on the “blurring” mean-shift algorithm, which is one version of the mean-shift process that successively blurs the dataset. The analysis of the blurring mean-shift is relatively more complicated compared to the nonblurring version, yet the algorithm convergence and the estimation consistency have not been well studied in the literature. In this paper we prove both the convergence and the consistency of the blurring mean-shift. We also perform simulation studies to compare the efficiency of the blurring and the nonblurring versions of the mean-shift algorithms. Our results show that the blurring mean-shift has more efficiency. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Suggested Citation

  • Ting-Li Chen, 2015. "On the convergence and consistency of the blurring mean-shift process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 157-176, February.
  • Handle: RePEc:spr:aistmt:v:67:y:2015:i:1:p:157-176
    DOI: 10.1007/s10463-013-0443-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0443-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0443-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fujisawa, Hironori & Eguchi, Shinto, 2008. "Robust parameter estimation with a small bias against heavy contamination," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2053-2081, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ting-Li & Fujisawa, Hironori & Huang, Su-Yun & Hwang, Chii-Ruey, 2016. "On the weak convergence and Central Limit Theorem of blurring and nonblurring processes with application to robust location estimation," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 165-184.
    2. Carlo Grillenzoni, 2016. "Design of Blurring Mean-Shift Algorithms for Data Classification," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 262-281, July.
    3. Jian Chen & Yongkun Shi & Jiaquan Sun & Jiangkuan Li & Jing Xu, 2023. "Base Station Planning Based on Region Division and Mean Shift Clustering," Mathematics, MDPI, vol. 11(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    2. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Liu, Yan, 2017. "Robust parameter estimation for stationary processes by an exotic disparity from prediction problem," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 120-130.
    4. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    5. Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
    6. Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    7. Dries Cornilly & Lise Tubex & Stefan Van Aelst & Tim Verdonck, 2024. "Robust and sparse logistic regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 663-679, September.
    8. A. Basu & A. Mandal & N. Martin & L. Pardo, 2015. "Robust tests for the equality of two normal means based on the density power divergence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 611-634, July.
    9. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    10. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    11. Akifumi Okuno, 2024. "Minimizing robust density power-based divergences for general parametric density models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 851-875, October.
    12. Hung Hung & Zhi†Yu Jou & Su†Yun Huang, 2018. "Robust mislabel logistic regression without modeling mislabel probabilities," Biometrics, The International Biometric Society, vol. 74(1), pages 145-154, March.
    13. Shogo Kato & Shinto Eguchi, 2016. "Robust estimation of location and concentration parameters for the von Mises–Fisher distribution," Statistical Papers, Springer, vol. 57(1), pages 205-234, March.
    14. Takayuki Kawashima & Hironori Fujisawa, 2023. "Robust regression against heavy heterogeneous contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(4), pages 421-442, May.
    15. Masashi Sugiyama & Taiji Suzuki & Takafumi Kanamori, 2012. "Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1009-1044, October.
    16. Chen, Ting-Li & Fujisawa, Hironori & Huang, Su-Yun & Hwang, Chii-Ruey, 2016. "On the weak convergence and Central Limit Theorem of blurring and nonblurring processes with application to robust location estimation," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 165-184.
    17. Yuri Goegebeur & Armelle Guillou & Jing Qin, 2023. "Robust estimation of the conditional stable tail dependence function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 201-231, April.
    18. M. Ekström & S. M. Mirakhmedov & S. Rao Jammalamadaka, 2020. "A class of asymptotically efficient estimators based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 617-636, September.
    19. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    20. Mingyang Ren & Sanguo Zhang & Qingzhao Zhang, 2021. "Robust high-dimensional regression for data with anomalous responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 703-736, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:67:y:2015:i:1:p:157-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.