IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i9p2053-2081.html
   My bibliography  Save this article

Robust parameter estimation with a small bias against heavy contamination

Author

Listed:
  • Fujisawa, Hironori
  • Eguchi, Shinto

Abstract

In this paper we consider robust parameter estimation based on a certain cross entropy and divergence. The robust estimate is defined as the minimizer of the empirically estimated cross entropy. It is shown that the robust estimate can be regarded as a kind of projection from the viewpoint of a Pythagorean relation based on the divergence. This property implies that the bias caused by outliers can become sufficiently small even in the case of heavy contamination. It is seen that the asymptotic variance of the robust estimator is naturally overweighted in proportion to the ratio of contamination. One may surmise that another form of cross entropy can present the same behavior as that discussed above. It can be proved under some conditions that no cross entropy can present the same behavior except for the cross entropy considered here and its monotone transformation.

Suggested Citation

  • Fujisawa, Hironori & Eguchi, Shinto, 2008. "Robust parameter estimation with a small bias against heavy contamination," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2053-2081, October.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:2053-2081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00045-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miyamura, Masashi & Kano, Yutaka, 2006. "Robust Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1525-1550, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shogo Kato & Shinto Eguchi, 2016. "Robust estimation of location and concentration parameters for the von Mises–Fisher distribution," Statistical Papers, Springer, vol. 57(1), pages 205-234, March.
    2. Takayuki Kawashima & Hironori Fujisawa, 2023. "Robust regression against heavy heterogeneous contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(4), pages 421-442, May.
    3. Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
    4. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    5. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    6. M. Ekström & S. M. Mirakhmedov & S. Rao Jammalamadaka, 2020. "A class of asymptotically efficient estimators based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 617-636, September.
    7. Liu, Yan, 2017. "Robust parameter estimation for stationary processes by an exotic disparity from prediction problem," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 120-130.
    8. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    9. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    10. Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    11. Mingyang Ren & Sanguo Zhang & Qingzhao Zhang, 2021. "Robust high-dimensional regression for data with anomalous responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 703-736, August.
    12. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    13. Chen, Ting-Li & Fujisawa, Hironori & Huang, Su-Yun & Hwang, Chii-Ruey, 2016. "On the weak convergence and Central Limit Theorem of blurring and nonblurring processes with application to robust location estimation," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 165-184.
    14. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Hung Hung & Zhi†Yu Jou & Su†Yun Huang, 2018. "Robust mislabel logistic regression without modeling mislabel probabilities," Biometrics, The International Biometric Society, vol. 74(1), pages 145-154, March.
    16. A. Basu & A. Mandal & N. Martin & L. Pardo, 2015. "Robust tests for the equality of two normal means based on the density power divergence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 611-634, July.
    17. Ting-Li Chen, 2015. "On the convergence and consistency of the blurring mean-shift process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 157-176, February.
    18. Masashi Sugiyama & Taiji Suzuki & Takafumi Kanamori, 2012. "Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1009-1044, October.
    19. Yuri Goegebeur & Armelle Guillou & Jing Qin, 2023. "Robust estimation of the conditional stable tail dependence function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 201-231, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    2. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    3. Vinciotti, Veronica & Hashem, Hussein, 2013. "Robust methods for inferring sparse network structures," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 84-94.
    4. Stead, Alexander D. & Wheat, Phill & Greene, William H., 2023. "Robust maximum likelihood estimation of stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 309(1), pages 188-201.
    5. Hokeun Sun & Hongzhe Li, 2012. "Robust Gaussian Graphical Modeling Via l 1 Penalization," Biometrics, The International Biometric Society, vol. 68(4), pages 1197-1206, December.
    6. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:2053-2081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.