IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v29y2020i3d10.1007_s11749-019-00637-7.html
   My bibliography  Save this article

A class of asymptotically efficient estimators based on sample spacings

Author

Listed:
  • M. Ekström

    (Umeå University
    Swedish University of Agricultural Sciences)

  • S. M. Mirakhmedov

    (Academy of Sciences of Uzbekistan)

  • S. Rao Jammalamadaka

    (University of California)

Abstract

In this paper, we consider general classes of estimators based on higher-order sample spacings, called the Generalized Spacings Estimators. Such classes of estimators are obtained by minimizing the Csiszár divergence between the empirical and true distributions for various convex functions, include the “maximum spacing estimators” as well as the maximum likelihood estimators (MLEs) as special cases, and are especially useful when the latter do not exist. These results generalize several earlier studies on spacings-based estimation, by utilizing non-overlapping spacings that are of an order which increases with the sample size. These estimators are shown to be consistent as well as asymptotically normal under a fairly general set of regularity conditions. When the step size and the number of spacings grow with the sample size, an asymptotically efficient class of estimators, called the “Minimum Power Divergence Estimators,” are shown to exist. Simulation studies give further support to the performance of these asymptotically efficient estimators in finite samples and compare well relative to the MLEs. Unlike the MLEs, some of these estimators are also shown to be quite robust under heavy contamination.

Suggested Citation

  • M. Ekström & S. M. Mirakhmedov & S. Rao Jammalamadaka, 2020. "A class of asymptotically efficient estimators based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 617-636, September.
  • Handle: RePEc:spr:testjl:v:29:y:2020:i:3:d:10.1007_s11749-019-00637-7
    DOI: 10.1007/s11749-019-00637-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00637-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00637-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sherzod M. Mirakhmedov & S. Rao Jammalamadaka, 2013. "Higher-order expansions and efficiencies of tests based on spacings," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 339-359, June.
    2. Fujisawa, Hironori & Eguchi, Shinto, 2008. "Robust parameter estimation with a small bias against heavy contamination," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2053-2081, October.
    3. Menéndez, M. & Morales, D. & Pardo, L., 1997. "Maximum entropy principle and statistical inference on condensed ordered data," Statistics & Probability Letters, Elsevier, vol. 34(1), pages 85-93, May.
    4. Yongzhao Shao & Marjorie Hahn, 1999. "Strong Consistency of the Maximum Product of Spacings Estimates with Applications in Nonparametrics and in Estimation of Unimodal Densities," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 31-49, March.
    5. Kristi Kuljus & Bo Ranneby, 2015. "Generalized Maximum Spacing Estimation for Multivariate Observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1092-1108, December.
    6. A. Mayoral & D. Morales & J. Morales & I. Vajda, 2003. "On efficiency of estimation and testing with data quantized to fixed number of cells," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 57(1), pages 1-27, February.
    7. Mirakhmedov, Sherzod A., 2005. "Lower estimation of the remainder term in the CLT for a sum of the functions of k-spacings," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 411-424, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Rahul, 2023. "Some goodness of fit tests based on centre outward spacings," Statistics & Probability Letters, Elsevier, vol. 194(C).
    2. Kristi Kuljus & Bo Ranneby, 2021. "Maximum spacing estimation for continuous time Markov chains and semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 421-443, July.
    3. Rahul Singh & Neeraj Misra, 2023. "Some parametric tests based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 211-231, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahul Singh & Neeraj Misra, 2023. "Some parametric tests based on sample spacings," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 211-231, March.
    2. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    3. Kristi Kuljus & Bo Ranneby, 2020. "Asymptotic normality of generalized maximum spacing estimators for multivariate observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 968-989, September.
    4. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Kristi Kuljus & Bo Ranneby, 2015. "Generalized Maximum Spacing Estimation for Multivariate Observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1092-1108, December.
    6. R. Jiménez & J. E. Yukich, 2002. "Asymptotics for Statistical Distances Based on Voronoi Tessellations," Journal of Theoretical Probability, Springer, vol. 15(2), pages 503-541, April.
    7. Liu, Yan, 2017. "Robust parameter estimation for stationary processes by an exotic disparity from prediction problem," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 120-130.
    8. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    9. Sherzod Mirakhmedov & Syed Tirmizi & Muhammad Naeem, 2011. "A Cramér-type large deviation theorem for sums of functions of higher order non-overlapping spacings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(1), pages 33-54, July.
    10. S. M. Mirakhmedov & S. Rao Jammalamadaka & Ibrahim B. Mohamed, 2014. "On Edgeworth Expansions in Generalized Urn Models," Journal of Theoretical Probability, Springer, vol. 27(3), pages 725-753, September.
    11. Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
    12. Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    13. Ibrahim Bin Mohamed & Sherzod M. Mirakhmedov, 2016. "Approximation by Normal Distribution for a Sample Sum in Sampling Without Replacement from a Finite Population," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 188-220, August.
    14. Kristi Kuljus & Bo Ranneby, 2021. "Maximum spacing estimation for continuous time Markov chains and semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 421-443, July.
    15. Dries Cornilly & Lise Tubex & Stefan Van Aelst & Tim Verdonck, 2024. "Robust and sparse logistic regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 663-679, September.
    16. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum product of spacings prediction of future record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 853-868, October.
    17. A. Basu & A. Mandal & N. Martin & L. Pardo, 2015. "Robust tests for the equality of two normal means based on the density power divergence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 611-634, July.
    18. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    19. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    20. Akifumi Okuno, 2024. "Minimizing robust density power-based divergences for general parametric density models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 851-875, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:29:y:2020:i:3:d:10.1007_s11749-019-00637-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.