Semi-empirical likelihood ratio confidence intervals for the difference of two sample means
Author
Abstract
Suggested Citation
DOI: 10.1007/BF00773597
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- McKeague, Ian W. & Zhao, Yichuan, 2002. "Simultaneous confidence bands for ratios of survival functions via empirical likelihood," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 405-415, December.
- Wang, Qihua & Wang, Jane-Ling, 2001. "Inference for the Mean Difference in the Two-Sample Random Censorship Model," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 295-315, November.
- Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2016. "Empirical Likelihood for Outlier Detection and Estimation in Autoregressive Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 315-336, May.
- Huang, Zhensheng & Zhou, Zhangong & Jiang, Rong & Qian, Weimin & Zhang, Riquan, 2010. "Empirical likelihood based inference for semiparametric varying coefficient partially linear models with error-prone linear covariates," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 497-504, March.
- Zhao, Yichuan & Zhao, Meng, 2011. "Empirical likelihood for the contrast of two hazard functions with right censoring," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 392-401, March.
- Qin, Yong Song, 1997. "Semi-parametric likelihood ratio confidence intervals for various differences of two populations," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 135-143, April.
- Robert Drake & Apratim Guha, 2014. "A mutual information-based k -sample test for discrete distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 2011-2027, September.
More about this item
Keywords
Empirical likelihood; hypotheses tests; semi-empirical likelihood; Wilks's theorem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:46:y:1994:i:1:p:117-126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.