IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v79y2001i2p295-315.html
   My bibliography  Save this article

Inference for the Mean Difference in the Two-Sample Random Censorship Model

Author

Listed:
  • Wang, Qihua
  • Wang, Jane-Ling

Abstract

Inference for the mean difference in the two-sample random censorship model is an important problem in comparative survival and reliability test studies. This paper develops an adjusted empirical likelihood inference and a martingale-based bootstrap inference for the mean difference. A nonparametric version of Wilks' theorem for the adjusted empirical likelihood is derived, and the corresponding empirical likelihood confidence interval of the mean difference is constructed. Also, it is shown that the martingale-based bootstrap gives a correct first order asymptotic approximation of the corresponding estimator of the mean difference, which ensures that the martingale-based bootstrap confidence interval has asymptotically correct coverage probability. A simulation study is conducted to compare the adjusted empirical likelihood, the martingale-based bootstrap, and Efron's bootstrap in terms of coverage accuracies and average lengths of the confidence intervals. The simulation indicates that the proposed adjusted empirical likelihood and the martingale-based bootstrap confidence procedures are comparable, and both seem to outperform Efron's bootstrap procedure.

Suggested Citation

  • Wang, Qihua & Wang, Jane-Ling, 2001. "Inference for the Mean Difference in the Two-Sample Random Censorship Model," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 295-315, November.
  • Handle: RePEc:eee:jmvana:v:79:y:2001:i:2:p:295-315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91974-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Qin, 1994. "Semi-empirical likelihood ratio confidence intervals for the difference of two sample means," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(1), pages 117-126, March.
    2. Chen, S. X., 1994. "Empirical Likelihood Confidence Intervals for Linear Regression Coefficients," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 24-40, April.
    3. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 621-637, December.
    4. Wang, Qi-Hua & Jing, Bing-Yi, 1999. "Empirical likelihood for partial linear models with fixed designs," Statistics & Probability Letters, Elsevier, vol. 41(4), pages 425-433, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichuan Zhao & Song Yang, 2008. "Empirical likelihood inference for censored median regression with weighted empirical hazard functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 441-457, June.
    2. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.
    3. Zhou, Mai & Zhu, Shihong, 2015. "Empirical likelihood confidence band for the difference of survival functions under proportional hazards model," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 228-235.
    4. Shen, Junshan & Yuen, Kam Chuen & Liu, Chunling, 2016. "Empirical likelihood confidence regions for one- or two- samples with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 285-293.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qi-Hua & Li, Gang, 2002. "Empirical Likelihood Semiparametric Regression Analysis under Random Censorship," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 469-486, November.
    2. Guo-Liang Fan & Han-Ying Liang & Jiang-Feng Wang, 2013. "Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors," Statistical Papers, Springer, vol. 54(1), pages 85-112, February.
    3. Hu, Xuemei & Wang, Zhizhong & Zhao, Zhiwei, 2009. "Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1044-1052, April.
    4. Chen, Xia & Cui, Hengjian, 2008. "Empirical likelihood inference for partial linear models under martingale difference sequence," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2895-2901, December.
    5. Xuemin Zi & Changliang Zou & Yukun Liu, 2012. "Two-sample empirical likelihood method for difference between coefficients in linear regression model," Statistical Papers, Springer, vol. 53(1), pages 83-93, February.
    6. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.
    7. Francesco Bravo, "undated". "Empirical likelihood specification testing in linear regression models," Discussion Papers 00/28, Department of Economics, University of York.
    8. Chuanhua Wei & Yubo Luo & Xizhi Wu, 2012. "Empirical likelihood for partially linear additive errors-in-variables models," Statistical Papers, Springer, vol. 53(2), pages 485-496, May.
    9. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
    10. Jing, Bing-Yi, 1995. "Two-sample empirical likelihood method," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 315-319, September.
    11. Bruce Brown & Song Chen, 1998. "Combined and Least Squares Empirical Likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 697-714, December.
    12. Liu, Yukun & Zou, Changliang & Zhang, Runchu, 2008. "Empirical likelihood for the two-sample mean problem," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 548-556, April.
    13. Qin, Gengsheng & Jing, Bing-Yi, 2001. "Censored Partial Linear Models and Empirical Likelihood," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 37-61, July.
    14. Cui, Hengjian & Chen, Song Xi, 2003. "Empirical likelihood confidence region for parameter in the errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 101-115, January.
    15. Ouyang, Jiangrong & Bondell, Howard, 2023. "Bayesian analysis of longitudinal data via empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    16. Liu, Yukun & Yu, Chi Wai, 2010. "Bartlett correctable two-sample adjusted empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1701-1711, August.
    17. Lu, Wenbin & Liang, Yu, 2006. "Empirical likelihood inference for linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1586-1599, August.
    18. Melnykov, Volodymyr & Shen, Gang, 2013. "Clustering through empirical likelihood ratio," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 1-10.
    19. Wang, Qi-Hua & Jing, Bing-Yi, 1999. "Empirical likelihood for partial linear models with fixed designs," Statistics & Probability Letters, Elsevier, vol. 41(4), pages 425-433, February.
    20. Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:79:y:2001:i:2:p:295-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.