IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i3d10.1007_s11634-018-0342-1.html
   My bibliography  Save this article

Generalised linear model trees with global additive effects

Author

Listed:
  • Heidi Seibold

    (University of Zurich
    Institute for Medical Information Processing, Biometry, and Epidemiology Ludwig-Maximilans-Universität München)

  • Torsten Hothorn

    (University of Zurich)

  • Achim Zeileis

    (Universität Innsbruck)

Abstract

Model-based trees are used to find subgroups in data which differ with respect to model parameters. In some applications it is natural to keep some parameters fixed globally for all observations while asking if and how other parameters vary across subgroups. Existing implementations of model-based trees can only deal with the scenario where all parameters depend on the subgroups. We propose partially additive linear model trees (PALM trees) as an extension of (generalised) linear model trees (LM and GLM trees, respectively), in which the model parameters are specified a priori to be estimated either globally from all observations or locally from the observations within the subgroups determined by the tree. Simulations show that the method has high power for detecting subgroups in the presence of global effects and reliably recovers the true parameters. Furthermore, treatment–subgroup differences are detected in an empirical application of the method to data from a mathematics exam: the PALM tree is able to detect a small subgroup of students that had a disadvantage in an exam with two versions while adjusting for overall ability effects.

Suggested Citation

  • Heidi Seibold & Torsten Hothorn & Achim Zeileis, 2019. "Generalised linear model trees with global additive effects," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 703-725, September.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0342-1
    DOI: 10.1007/s11634-018-0342-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-018-0342-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-018-0342-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    2. L. Doove & E. Dusseldorp & K. Deun & I. Mechelen, 2014. "A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment–subgroup interactions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 403-425, December.
    3. Hajjem, Ahlem & Bellavance, François & Larocque, Denis, 2011. "Mixed effects regression trees for clustered data," Statistics & Probability Letters, Elsevier, vol. 81(4), pages 451-459, April.
    4. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    5. Seibold Heidi & Zeileis Achim & Hothorn Torsten, 2016. "Model-Based Recursive Partitioning for Subgroup Analyses," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 45-63, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manlio Migliorati & Marica Manisera & Paola Zuccolotto, 2023. "Integration of model-based recursive partitioning with bias reduction estimation: a case study assessing the impact of Oliver’s four factors on the probability of winning a basketball game," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 271-293, March.
    2. Anna Gottard & Giulia Vannucci & Leonardo Grilli & Carla Rampichini, 2023. "Mixed-effect models with trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 431-461, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    2. Cynthia Huber & Norbert Benda & Tim Friede, 2022. "Subgroup identification in individual participant data meta-analysis using model-based recursive partitioning," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 797-815, September.
    3. Bürgin, Reto & Ritschard, Gilbert, 2015. "Tree-based varying coefficient regression for longitudinal ordinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 65-80.
    4. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    5. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw, Center for Open Science.
    6. Carolin Strobl & Julia Kopf & Achim Zeileis, 2015. "Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 289-316, June.
    7. Gutiérrez-Vargas, Álvaro A. & Meulders, Michel & Vandebroek, Martina, 2023. "Modeling preference heterogeneity using model-based decision trees," Journal of choice modelling, Elsevier, vol. 46(C).
    8. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    9. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    10. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    11. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    12. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    13. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    14. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    15. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    16. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    17. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    18. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    19. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    20. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0342-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.