IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v16y2022i3d10.1007_s11634-021-00458-3.html
   My bibliography  Save this article

Subgroup identification in individual participant data meta-analysis using model-based recursive partitioning

Author

Listed:
  • Cynthia Huber

    (University Medical Center Göttingen)

  • Norbert Benda

    (University Medical Center Göttingen
    Federal Institute for Drugs and Medical Devices (BfArM))

  • Tim Friede

    (University Medical Center Göttingen)

Abstract

Model-based recursive partitioning (MOB) can be used to identify subgroups with differing treatment effects. The detection rate of treatment-by-covariate interactions and the accuracy of identified subgroups using MOB depend strongly on the sample size. Using data from multiple randomized controlled clinical trials can overcome the problem of too small samples. However, naively pooling data from multiple trials may result in the identification of spurious subgroups as differences in study design, subject selection and other sources of between-trial heterogeneity are ignored. In order to account for between-trial heterogeneity in individual participant data (IPD) meta-analysis random-effect models are frequently used. Commonly, heterogeneity in the treatment effect is modelled using random effects whereas heterogeneity in the baseline risks is modelled by either fixed effects or random effects. In this article, we propose metaMOB, a procedure using the generalized mixed-effects model tree (GLMM tree) algorithm for subgroup identification in IPD meta-analysis. Although the application of metaMOB is potentially wider, e.g. randomized experiments with participants in social sciences or preclinical experiments in life sciences, we focus on randomized controlled clinical trials. In a simulation study, metaMOB outperformed GLMM trees assuming a random intercept only and model-based recursive partitioning (MOB), whose algorithm is the basis for GLMM trees, with respect to the false discovery rates, accuracy of identified subgroups and accuracy of estimated treatment effect. The most robust and therefore most promising method is metaMOB with fixed effects for modelling the between-trial heterogeneity in the baseline risks.

Suggested Citation

  • Cynthia Huber & Norbert Benda & Tim Friede, 2022. "Subgroup identification in individual participant data meta-analysis using model-based recursive partitioning," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 797-815, September.
  • Handle: RePEc:spr:advdac:v:16:y:2022:i:3:d:10.1007_s11634-021-00458-3
    DOI: 10.1007/s11634-021-00458-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-021-00458-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-021-00458-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    2. Seibold Heidi & Zeileis Achim & Hothorn Torsten, 2016. "Model-Based Recursive Partitioning for Subgroup Analyses," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 45-63, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    2. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw, Center for Open Science.
    3. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    4. Heidi Seibold & Torsten Hothorn & Achim Zeileis, 2019. "Generalised linear model trees with global additive effects," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 703-725, September.
    5. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    6. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw_v1, Center for Open Science.
    7. Lisa Dandolo & Klaus Telkmann & Christina Hartig & Sophie Horstmann & Sara Pedron & Lars Schwettmann & Peter Selsam & Alexandra Schneider & Gabriele Bolte & on behalf of the INGER Study Group, 2023. "Do Multiple Sex/Gender Dimensions Play a Role in the Association of Green Space and Self-Rated Health? Model-Based Recursive Partitioning Results from the KORA INGER Study," IJERPH, MDPI, vol. 20(7), pages 1-23, March.
    8. Seibold Heidi & Zeileis Achim & Hothorn Torsten, 2016. "Model-Based Recursive Partitioning for Subgroup Analyses," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 45-63, May.
    9. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    10. Edgar Merkle & Jinyan Fan & Achim Zeileis, 2014. "Testing for Measurement Invariance with Respect to an Ordinal Variable," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 569-584, October.
    11. Sies Aniek & Van Mechelen Iven, 2017. "Comparing Four Methods for Estimating Tree-Based Treatment Regimes," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
    12. Alexander J. Ohnmacht & Arndt Stahler & Sebastian Stintzing & Dominik P. Modest & Julian W. Holch & C. Benedikt Westphalen & Linus Hölzel & Marisa K. Schübel & Ana Galhoz & Ali Farnoud & Minhaz Ud-Dea, 2023. "The Oncology Biomarker Discovery framework reveals cetuximab and bevacizumab response patterns in metastatic colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Thomas Windberger & Achim Zeileis, 2011. "Structural Breaks in Inflation Dynamics within the European Monetary Union," Working Papers 2011-12, Faculty of Economics and Statistics, Universität Innsbruck.
    14. Duo Qin & Sophie Van Huellen & Qing-Chao Wang, 2015. "How Credible Are Shrinking Wage Elasticities of Married Women Labour Supply?," Econometrics, MDPI, vol. 4(1), pages 1-31, December.
    15. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    16. Florian Wickelmaier & Achim Zeileis, 2016. "Using Recursive Partitioning to Account for Parameter Heterogeneity in Multinomial Processing Tree Models," Working Papers 2016-26, Faculty of Economics and Statistics, Universität Innsbruck.
    17. Bürgin, Reto & Ritschard, Gilbert, 2015. "Tree-based varying coefficient regression for longitudinal ordinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 65-80.
    18. Brunori, Paolo & Davillas, Apostolos & Jones, Andrew M. & Scarchilli, Giovanna, 2022. "Model-based Recursive Partitioning to Estimate Unfair Health Inequalities in the United Kingdom Household Longitudinal Study," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 543-565.
    19. Gutiérrez-Vargas, Álvaro A. & Meulders, Michel & Vandebroek, Martina, 2023. "Modeling preference heterogeneity using model-based decision trees," Journal of choice modelling, Elsevier, vol. 46(C).
    20. Carolin Strobl & Florian Wickelmaier & Achim Zeileis, 2011. "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 135-153, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:16:y:2022:i:3:d:10.1007_s11634-021-00458-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.