A comparative study on large scale kernelized support vector machines
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-016-0265-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bischl, Bernd & Lang, Michel & Mersmann, Olaf & Rahnenführer, Jörg & Weihs, Claus, 2015. "BatchJobs and BatchExperiments: Abstraction Mechanisms for Using R in Batch Environments," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i11).
- Joachims, Thorsten, 1998. "Making large-scale SVM learning practical," Technical Reports 1998,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Behzad Pirouz & Behrouz Pirouz, 2023. "Multi-Objective Models for Sparse Optimization in Linear Support Vector Machine Classification," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luca Zanni, 2006. "An Improved Gradient Projection-based Decomposition Technique for Support Vector Machines," Computational Management Science, Springer, vol. 3(2), pages 131-145, April.
- Peng Han & Xinyue Yang & Yifei Zhao & Xiangmin Guan & Shengjie Wang, 2022. "Quantitative Ground Risk Assessment for Urban Logistical Unmanned Aerial Vehicle (UAV) Based on Bayesian Network," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
- Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
- Hoi-Ming Chi & Okan K. Ersoy & Herbert Moskowitz & Kemal Altinkemer, 2007. "Toward Automated Intelligent Manufacturing Systems (AIMS)," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 302-312, May.
- Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
- Tianrui Yin & Wei Chen & Bo Liu & Changzhen Li & Luyao Du, 2023. "Light “You Only Look Once”: An Improved Lightweight Vehicle-Detection Model for Intelligent Vehicles under Dark Conditions," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
- Prabowo, Rudy & Thelwall, Mike, 2009. "Sentiment analysis: A combined approach," Journal of Informetrics, Elsevier, vol. 3(2), pages 143-157.
- Luminita STATE & Catalina COCIANU & Cristian USCATU & Marinela MIRCEA, 2013. "Extensions of the SVM Method to the Non-Linearly Separable Data," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 17(2), pages 173-182.
- C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
- Andrea Manno & Laura Palagi & Simone Sagratella, 2014. "A Class of Convergent Parallel Algorithms for SVMs Training," DIAG Technical Reports 2014-17, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Giampaolo Liuzzi & Laura Palagi & Mauro Piacentini, 2010. "On the convergence of a Jacobi-type algorithm for Singly Linearly-Constrained Problems Subject to simple Bounds," DIS Technical Reports 2010-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Yu Bian & Hao Chen & Zujian Liu & Ling Chen & Ya Guo & Yongpeng Yang, 2024. "Geological Disaster Susceptibility Evaluation Using Machine Learning: A Case Study of the Atal Tunnel in Tibetan Plateau," Sustainability, MDPI, vol. 16(11), pages 1-23, May.
- Farah Mohammad & Saad Al Ahmadi, 2023. "Alzheimer’s Disease Prediction Using Deep Feature Extraction and Optimization," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
- Wang, Yongqiang & Huang, Donghua & Sun, Kexin & Shen, Hongzheng & Xing, Xuguang & Liu, Xiao & Ma, Xiaoyi, 2023. "Multiobjective optimization of regional irrigation and nitrogen schedules by using the CERES-Maize model with crop parameters determined from the remotely sensed leaf area index," Agricultural Water Management, Elsevier, vol. 286(C).
- Luminita STATE & Catalina COCIANU & Doina FUSARU, 2010. "A Survey on Potential of the Support Vector Machines in Solving Classification and Regression Problems," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(3), pages 128-139.
- Wolfgang Karl Härdle & Dedy Dwi Prastyo & Christian Hafner, 2012.
"Support Vector Machines with Evolutionary Feature Selection for Default Prediction,"
SFB 649 Discussion Papers
SFB649DP2012-030, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Hardle, Wolfgang Karl & Prastyo, Dedy Dwi & Hafner, Christian, 2013. "Support Vector Machines with Evolutionary Feature Selection for Default Prediction," LIDAM Discussion Papers ISBA 2013040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Weiwei Ding & Yuhong Zhang & Liya Huang, 2022. "Using a Novel Functional Brain Network Approach to Locate Important Nodes for Working Memory Tasks," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
- Heguang Sun & Lin Zhou & Meiyan Shu & Jie Zhang & Ziheng Feng & Haikuan Feng & Xiaoyu Song & Jibo Yue & Wei Guo, 2024. "Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation," Agriculture, MDPI, vol. 14(3), pages 1-18, March.
- Sachin Kumar & Aditya Sharma & B Kartheek Reddy & Shreyas Sachan & Vaibhav Jain & Jagvinder Singh, 2022. "An intelligent model based on integrated inverse document frequency and multinomial Naive Bayes for current affairs news categorisation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1341-1355, June.
- Wang, Yongqiang & Sun, Kexin & Gao, Yunhe & Liu, Ruizhe & Shen, Hongzheng & Xing, Xuguang & Ma, Xiaoyi, 2024. "Improving crop model accuracy in the development of regional irrigation and nitrogen schedules by using data assimilation and spatial clustering algorithms," Agricultural Water Management, Elsevier, vol. 291(C).
More about this item
Keywords
Support vector machine; Multi-objective optimization; Supervised learning; Machine learning; Large scale; Nonlinear SVM; Parameter tuning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:12:y:2018:i:4:d:10.1007_s11634-016-0265-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.