IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i6p3564-d773181.html
   My bibliography  Save this article

Using a Novel Functional Brain Network Approach to Locate Important Nodes for Working Memory Tasks

Author

Listed:
  • Weiwei Ding

    (College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Yuhong Zhang

    (College of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Liya Huang

    (College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing 210003, China)

Abstract

Working Memory (WM) is a short-term memory for processing and storing information. When investigating WM mechanisms using Electroencephalogram (EEG), its rhythmic synchronization properties inevitably become one of the focal features. To further leverage these features for better improve WM task performance, this paper uses a novel algorithm: Weight K-order propagation number (WKPN) to locate important brain nodes and their coupling characteristic in different frequency bands while subjects are proceeding French word retaining tasks, which is an intriguing but original experiment paradigm. Based on this approach, we investigated the node importance of PLV brain networks under different memory loads and found that the connectivity between frontal and parieto-occipital lobes in theta and beta frequency bands enhanced with increasing memory load. We used the node importance of the brain network as a feature vector of the SVM to classify different memory load states, and the highest classification accuracy of 95% is obtained in the beta band. Compared to the Weight degree centrality (WDC) and Weight Page Rank (WPR) algorithm, the SVM with the node importance of the brain network as the feature vector calculated by the WKPN algorithm has higher classification accuracy and shorter running time. It is concluded that the algorithm can effectively spot active central hubs so that researchers can later put more energy to study these areas where active hubs lie in such as placing Transcranial alternating current stimulation (tACS).

Suggested Citation

  • Weiwei Ding & Yuhong Zhang & Liya Huang, 2022. "Using a Novel Functional Brain Network Approach to Locate Important Nodes for Working Memory Tasks," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3564-:d:773181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/6/3564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/6/3564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ueli Rutishauser & Ian B. Ross & Adam N. Mamelak & Erin M. Schuman, 2010. "Human memory strength is predicted by theta-frequency phase-locking of single neurons," Nature, Nature, vol. 464(7290), pages 903-907, April.
    2. Joachims, Thorsten, 1998. "Making large-scale SVM learning practical," Technical Reports 1998,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Zanni, 2006. "An Improved Gradient Projection-based Decomposition Technique for Support Vector Machines," Computational Management Science, Springer, vol. 3(2), pages 131-145, April.
    2. Peng Han & Xinyue Yang & Yifei Zhao & Xiangmin Guan & Shengjie Wang, 2022. "Quantitative Ground Risk Assessment for Urban Logistical Unmanned Aerial Vehicle (UAV) Based on Bayesian Network," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    3. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    4. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    5. Hoi-Ming Chi & Okan K. Ersoy & Herbert Moskowitz & Kemal Altinkemer, 2007. "Toward Automated Intelligent Manufacturing Systems (AIMS)," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 302-312, May.
    6. Guillaume Etter & Suzanne Veldt & Jisoo Choi & Sylvain Williams, 2023. "Optogenetic frequency scrambling of hippocampal theta oscillations dissociates working memory retrieval from hippocampal spatiotemporal codes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
    8. Tianrui Yin & Wei Chen & Bo Liu & Changzhen Li & Luyao Du, 2023. "Light “You Only Look Once”: An Improved Lightweight Vehicle-Detection Model for Intelligent Vehicles under Dark Conditions," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    9. Eymann, Vera & Lachmann, Thomas & Beck, Ann-Kathrin & Czernochowski, Daniela, 2024. "EEG oscillatory evidence for the temporal dynamics of divergent and convergent thinking in the verbal knowledge domain," Intelligence, Elsevier, vol. 104(C).
    10. Härdle, Wolfgang Karl & Prastyo, Dedy Dwi & Hafner, Christian, 2012. "Support vector machines with evolutionary feature selection for default prediction," SFB 649 Discussion Papers 2012-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Sazan Guri, 2015. "Public Spaces in the Focus of Citizen’s Right - Case Study - Urban Spaces Tirana," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 1, ejis_v1_i.
    12. Prabowo, Rudy & Thelwall, Mike, 2009. "Sentiment analysis: A combined approach," Journal of Informetrics, Elsevier, vol. 3(2), pages 143-157.
    13. Manuela Costa & Diego Lozano-Soldevilla & Antonio Gil-Nagel & Rafael Toledano & Carina R. Oehrn & Lukas Kunz & Mar Yebra & Costantino Mendez-Bertolo & Lennart Stieglitz & Johannes Sarnthein & Nikolai , 2022. "Aversive memory formation in humans involves an amygdala-hippocampus phase code," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Luminita STATE & Catalina COCIANU & Cristian USCATU & Marinela MIRCEA, 2013. "Extensions of the SVM Method to the Non-Linearly Separable Data," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 17(2), pages 173-182.
    15. C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
    16. Qin, Ying-Mei & Che, Yan-Qiu & Zhao, Jia, 2018. "Effects of degree distributions on signal propagation in noisy feedforward neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 763-774.
    17. Andrea Manno & Laura Palagi & Simone Sagratella, 2014. "A Class of Convergent Parallel Algorithms for SVMs Training," DIAG Technical Reports 2014-17, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    18. Serena Scarpelli & Chiara Bartolacci & Aurora D’Atri & Maurizio Gorgoni & Luigi De Gennaro, 2019. "Mental Sleep Activity and Disturbing Dreams in the Lifespan," IJERPH, MDPI, vol. 16(19), pages 1-23, September.
    19. Cui, Kai & Li, Xinxue & Li, Gang, 2023. "What kind of fiscal policies and natural resources efficiency promotes green economic growth? Evidence from regression analysis," Resources Policy, Elsevier, vol. 85(PB).
    20. Giampaolo Liuzzi & Laura Palagi & Mauro Piacentini, 2010. "On the convergence of a Jacobi-type algorithm for Singly Linearly-Constrained Problems Subject to simple Bounds," DIS Technical Reports 2010-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3564-:d:773181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.