IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v12y2018i2d10.1007_s11634-016-0273-7.html
   My bibliography  Save this article

A semiparametric Bayesian joint model for multiple mixed-type outcomes: an application to acute myocardial infarction

Author

Listed:
  • Alessandra Guglielmi

    (Politecnico di Milano)

  • Francesca Ieva

    (Università degli Studi di Milano)

  • Anna Maria Paganoni

    (Politecnico di Milano)

  • Fernardo A. Quintana

    (Pontificia Universidad Católica de Chile)

Abstract

We propose a Bayesian semiparametric regression model to represent mixed-type multiple outcomes concerning patients affected by Acute Myocardial Infarction. Our approach is motivated by data coming from the ST-Elevation Myocardial Infarction (STEMI) Archive, a multi-center observational prospective clinical study planned as part of the Strategic Program of Lombardy, Italy. We specifically consider a joint model for a variable measuring treatment time and in-hospital and 60-day survival indicators. One of our main motivations is to understand how the various hospitals differ in terms of the variety of information collected as part of the study. To do so we postulate a semiparametric random effects model that incorporates dependence on a location indicator that is used to explicitly differentiate among hospitals in or outside the city of Milano. The model is based on the two parameter Poisson-Dirichlet prior, also known as the Pitman-Yor process prior. We discuss the resulting posterior inference, including sensitivity analysis, and a comparison with the particular sub-model arising when a Dirichlet process prior is assumed.

Suggested Citation

  • Alessandra Guglielmi & Francesca Ieva & Anna Maria Paganoni & Fernardo A. Quintana, 2018. "A semiparametric Bayesian joint model for multiple mixed-type outcomes: an application to acute myocardial infarction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 399-423, June.
  • Handle: RePEc:spr:advdac:v:12:y:2018:i:2:d:10.1007_s11634-016-0273-7
    DOI: 10.1007/s11634-016-0273-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-016-0273-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-016-0273-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    2. Mary Dupuis Sammel & Louise M. Ryan & Julie M. Legler, 1997. "Latent Variable Models for Mixed Discrete and Continuous Outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 667-678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Xiaoning & Kang, Lulu & Chen, Wei & Deng, Xinwei, 2022. "A generative approach to modeling data with quantitative and qualitative responses," Journal of Multivariate Analysis, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    2. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    3. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    4. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    5. Chen Yuqi & Guo Wensheng & Kotanko Peter & Usvyat Len & Wang Yuedong, 2016. "Joint Model for Mortality and Hospitalization," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-11, November.
    6. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    7. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    8. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    9. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    10. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    11. Maximilian Schroder, 2024. "Mixing it up: Inflation at risk," Papers 2405.17237, arXiv.org, revised May 2024.
    12. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    13. Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
    14. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    15. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    16. Michael L. Pennell & David B. Dunson, 2008. "Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor," Biometrics, The International Biometric Society, vol. 64(2), pages 413-423, June.
    17. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    18. Trippa, Lorenzo & Muliere, Pietro, 2009. "Bayesian nonparametric binary regression via random tessellations," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2273-2280, November.
    19. Samson B. Adebayo & Ludwig Fahrmeir & Christian Seiler & Christian Heumann, 2011. "Geoadditive Latent Variable Modeling of Count Data on Multiple Sexual Partnering in Nigeria," Biometrics, The International Biometric Society, vol. 67(2), pages 620-628, June.
    20. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:12:y:2018:i:2:d:10.1007_s11634-016-0273-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.