Modeling the Dependence between Number of Trials and Success Probability in Beta-Binomial–Poisson Mixture Distributions
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. K. Lindsey, 1999. "Response Surfaces for Overdispersion in the Study of the Conditions for Fish Eggs Hatching," Biometrics, The International Biometric Society, vol. 55(1), pages 149-155, March.
- Andrew S. Allen & Huiman X. Barnhart, 2002. "Joint Models for Toxicology Studies with Dose‐Dependent Number of Implantations," Risk Analysis, John Wiley & Sons, vol. 22(6), pages 1165-1173, December.
- Mary Dupuis Sammel & Louise M. Ryan & Julie M. Legler, 1997. "Latent Variable Models for Mixed Discrete and Continuous Outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 667-678.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- M. J. Faddy & D. M. Smith, 2005. "Modeling the Dependence between the Number of Trials and the Success Probability in Binary Trials," Biometrics, The International Biometric Society, vol. 61(4), pages 1112-1114, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang Lu, 2019.
"Flexible (panel) regression models for bivariate count–continuous data with an insurance application,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
- Yang Lu, 2019. "Flexible (panel) regression models for bivariate count-continuous data with an insurance application," Post-Print hal-02419024, HAL.
- Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
- Chen Yuqi & Guo Wensheng & Kotanko Peter & Usvyat Len & Wang Yuedong, 2016. "Joint Model for Mortality and Hospitalization," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-11, November.
- Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
- Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
- Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
- Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
- Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
- Samson B. Adebayo & Ludwig Fahrmeir & Christian Seiler & Christian Heumann, 2011.
"Geoadditive Latent Variable Modeling of Count Data on Multiple Sexual Partnering in Nigeria,"
Biometrics, The International Biometric Society, vol. 67(2), pages 620-628, June.
- Adebayo, Samson B. & Fahrmeir, Ludwig & Seiler, Christian, 2009. "Geoadditive latent variable modelling of count data on multiple sexual partnering in Nigeria," MPRA Paper 27839, University Library of Munich, Germany.
- Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
- Nussbaum, Frank & Giesen, Joachim, 2020. "Pairwise sparse + low-rank models for variables of mixed type," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
- D. J. Bartholomew, 2002. "Discussion on the paper by Fayers and Hand," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(2), pages 253-261, June.
- Takahiro Hoshino & Hiroshi Kurata & Kazuo Shigemasu, 2006. "A Propensity Score Adjustment for Multiple Group Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 691-712, December.
- Mieke Beth Thomeer & Rin Reczek & Lawrence Stacey, 2022. "Childbearing Biographies as a Method to Examine Diversity and Clustering of Childbearing Experiences: A Research Brief," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(4), pages 1405-1415, August.
- Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
- Peter M. Fayers & David J. Hand, 2002. "Causal variables, indicator variables and measurement scales: an example from quality of life," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(2), pages 233-253, June.
- Bayerstadler, Andreas & van Dijk, Linda & Winter, Fabian, 2016. "Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 244-252.
- Feng, Xiangnan & Lu, Bin & Song, Xinyuan & Ma, Shuang, 2019. "Financial literacy and household finances: A Bayesian two-part latent variable modeling approach," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 119-137.
- Peter Congdon, 2010. "A multiple indicator, multiple cause method for representing social capital with an application to psychological distress," Journal of Geographical Systems, Springer, vol. 12(1), pages 1-23, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:59:y:2003:i:4:p:955-961. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.