IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v29y2012i2p170-198.html
   My bibliography  Save this article

FINDCLUS: Fuzzy INdividual Differences CLUStering

Author

Listed:
  • Paolo Giordani
  • Henk Kiers

Abstract

No abstract is available for this item.

Suggested Citation

  • Paolo Giordani & Henk Kiers, 2012. "FINDCLUS: Fuzzy INdividual Differences CLUStering," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 170-198, July.
  • Handle: RePEc:spr:jclass:v:29:y:2012:i:2:p:170-198
    DOI: 10.1007/s00357-012-9109-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-012-9109-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-012-9109-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    2. Donatella Vicari & Maurizio Vichi, 2009. "Structural Classification Analysis of Three-Way Dissimilarity Data," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 121-154, August.
    3. Anil Chaturvedi & J. Douglas Carroll, 2006. "CLUSCALE ("CLUstering and multidimensional SCAL[E]ing"): A Three-Way Hybrid Model Incorporating Overlapping Clustering and Multidimensional Scaling Structure," Journal of Classification, Springer;The Classification Society, vol. 23(2), pages 269-299, September.
    4. J. Carroll & Phipps Arabie, 1983. "Indclus: An individual differences generalization of the adclus model and the mapclus algorithm," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 157-169, June.
    5. Joost Rosmalen & Patrick Groenen & Javier Trejos & William Castillo, 2009. "Optimization Strategies for Two-Mode Partitioning," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 155-181, August.
    6. Willem Heiser & Patrick Groenen, 1997. "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 63-83, March.
    7. Mooijaart, Ab & van der Heijden, Peter G. M. & van der Ark, L. Andries, 1999. "A least squares algorithm for a mixture model for compositional data," Computational Statistics & Data Analysis, Elsevier, vol. 30(4), pages 359-379, June.
    8. A. Gordon & M. Vichi, 2001. "Fuzzy partition models for fitting a set of partitions," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 229-247, June.
    9. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    10. Maurizio Vichi & Roberto Rocci & Henk A.L. Kiers, 2007. "Simultaneous Component and Clustering Models for Three-way Data: Within and Between Approaches," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 71-98, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    2. Laura Bocci & Donatella Vicari, 2017. "GINDCLUS: Generalized INDCLUS with External Information," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 355-381, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    2. Vichi, Maurizio & Saporta, Gilbert, 2009. "Clustering and disjoint principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3194-3208, June.
    3. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    4. Joachim Harloff, 2011. "Extracting cover sets from free fuzzy sorting data," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(6), pages 1445-1457, October.
    5. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    6. Roberto Rocci & Maurizio Vichi, 2005. "Three-Mode Component Analysis with Crisp or Fuzzy Partition of Units," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 715-736, December.
    7. Simon Blanchard & Wayne DeSarbo & A. Atalay & Nukhet Harmancioglu, 2012. "Identifying consumer heterogeneity in unobserved categories," Marketing Letters, Springer, vol. 23(1), pages 177-194, March.
    8. Stephen L. France & Wen Chen & Yumin Deng, 2017. "ADCLUS and INDCLUS: analysis, experimentation, and meta-heuristic algorithm extensions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 371-393, June.
    9. D’Urso, Pierpaolo & Manca, Germana & Waters, Nigel & Girone, Stefania, 2019. "Visualizing regional clusters of Sardinia's EU supported agriculture: A Spatial Fuzzy Partitioning Around Medoids," Land Use Policy, Elsevier, vol. 83(C), pages 571-580.
    10. Adri Smaling & Geert Soete, 1992. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 451-457, September.
    11. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    12. Laura Bocci & Donatella Vicari, 2017. "GINDCLUS: Generalized INDCLUS with External Information," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 355-381, June.
    13. Willem Heiser, 2013. "In memoriam, J. Douglas Carroll 1939–2011," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 5-13, January.
    14. Husson, François & Josse, Julie & Saporta, Gilbert, 2016. "Jan de Leeuw and the French School of Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i06).
    15. repec:jss:jstsof:14:i12 is not listed on IDEAS
    16. Douglas Clarkson & Richard Gonzalez, 2001. "Random effects diagonal metric multidimensional scaling models," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 25-43, March.
    17. Rolf Langeheine, 1982. "Statistical evaluation of measures of fit in the Lingoes-Borg procrustean individual differences scaling," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 427-442, December.
    18. Iwin Leenen & Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1999. "Indclas: A three-way hierarchical classes model," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 9-24, March.
    19. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    20. Wayne DeSarbo & J. Douglas Carroll, 1985. "Three-way metric unfolding via alternating weighted least squares," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 275-300, September.
    21. M B Greeny, 1981. "Regional Preferences for Interlocking Directorates among the Largest American Corporations," Environment and Planning A, , vol. 13(7), pages 829-839, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:29:y:2012:i:2:p:170-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.