IDEAS home Printed from https://ideas.repec.org/a/sgh/gosnar/y2024i2p35-52.html
   My bibliography  Save this article

Financial Performance Analysis Using the Merec-Based Cobra Method: An Application to Traditional and Low-Cost Airlines

Author

Listed:
  • Veysi Asker

Abstract

The aim of this study is to examine the impact of the COVID-19 pandemic on the financial performance of traditional and low-cost airlines. In this context, the financial performance of 32 traditional and 14 low-cost airlines operating in different regions of the world was analysed using the Merec-based Cobra method for the before and during COVID-19 pandemic period (2018–2021). First, the financial ratios of the airlines were weighted using the Merec method, then the financial performance ranking of the airlines was conducted using the Cobra method. According to the results of the Cobra method, Ryanair (FR) was found to have the best financial performance in 2018 and 2020. Meanwhile, Allegiant Travel (G4) led the way in 2019, and Thai Airways (TG) came out on top in 2021. According to the analysis results, low-cost airlines such as Southwest Airlines (WN), Wizz Air (W6), Allegiant Air Travel (G4), and Ryanair (FR) showed better performance than a significant portion of traditional airlines in the period before the COVID- 19 pandemic. In contrast, during the COVID-19 pandemic, low-cost airlines such as Spring Airlines (9C), Air Arabia (G9), Cebu Air (5J), Easyjet (U2), and Jetblue Airways (B6) demonstrated worse performance than a significant portion of traditional airlines.

Suggested Citation

  • Veysi Asker, 2024. "Financial Performance Analysis Using the Merec-Based Cobra Method: An Application to Traditional and Low-Cost Airlines," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 35-52.
  • Handle: RePEc:sgh:gosnar:y:2024:i:2:p:35-52
    as

    Download full text from publisher

    File URL: https://gnpje.sgh.waw.pl/pdf-184315-111872
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abate, Megersa & Christidis, Panayotis & Purwanto, Alloysius Joko, 2020. "Government support to airlines in the aftermath of the COVID-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 89(C).
    2. Gudiel Pineda, Pedro Jose & Liou, James J.H. & Hsu, Chao-Che & Chuang, Yen-Ching, 2018. "An integrated MCDM model for improving airline operational and financial performance," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 103-117.
    3. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    4. Mladen Krstić & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Snežana Tadić & Violeta Roso, 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    5. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    6. Hsu, Chao-Che & Liou, James J.H., 2013. "An outsourcing provider decision model for the airline industry," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 40-46.
    7. Barros, Carlos Pestana & Wanke, Peter, 2015. "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks," Journal of Air Transport Management, Elsevier, vol. 44, pages 90-102.
    8. Czerny, Achim I. & Fu, Xiaowen & Lei, Zheng & Oum, Tae H., 2021. "Post pandemic aviation market recovery: Experience and lessons from China," Journal of Air Transport Management, Elsevier, vol. 90(C).
    9. Ljubomir Gigović & Dragan Pamučar & Zoran Bajić & Milić Milićević, 2016. "The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots," Sustainability, MDPI, vol. 8(4), pages 1-30, April.
    10. Yalcin, Ahmet Selcuk & Kilic, Huseyin Selcuk & Delen, Dursun, 2022. "The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    11. Merkert, Rico & Williams, George, 2013. "Determinants of European PSO airline efficiency – Evidence from a semi-parametric approach," Journal of Air Transport Management, Elsevier, vol. 29(C), pages 11-16.
    12. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    13. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    14. Nguyen, Minh-Anh Thi & Yu, Ming-Miin & Lirn, Taih-Cherng, 2022. "Revenue efficiency across airline business models: A bootstrap non-convex meta-frontier approach," Transport Policy, Elsevier, vol. 117(C), pages 108-117.
    15. Merkert, Rico & Hensher, David A., 2011. "The impact of strategic management and fleet planning on airline efficiency - A random effects Tobit model based on DEA efficiency scores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 686-695, August.
    16. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    17. Pires, Heloisa Márcia & Fernandes, Elton, 2012. "Malmquist financial efficiency analysis for airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 1049-1055.
    18. Albers, Sascha & Rundshagen, Volker, 2020. "European airlines′ strategic responses to the COVID-19 pandemic (January-May, 2020)," Journal of Air Transport Management, Elsevier, vol. 87(C).
    19. Wang, Wei-Kang & Lin, Fengyi & Ting, Irene Wei Kiong & Kweh, Qian Long & Lu, Wen-Min & Chiu, Tzu-Yu, 2017. "Does asset-light strategy contribute to the dynamic efficiency of global airlines?," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 99-108.
    20. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    21. Cao, Qian & Lv, Jinfeng & Zhang, Jun, 2015. "Productivity efficiency analysis of the airlines in China after deregulation," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 135-140.
    22. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    23. Kaya, Gizem & Aydın, Umut & Ülengin, Burç & Karadayı, Melis Almula & Ülengin, Füsun, 2023. "How do airlines survive? An integrated efficiency analysis on the survival of airlines," Journal of Air Transport Management, Elsevier, vol. 107(C).
    24. Veysi ASKER & Temel Caner USTAÖMER, 2022. "Financial Efficiency Analysis the Malmquist TFP Method An Application on Star Alliance Member Airlines," Bingol University Journal of Economics and Administrative Sciences, Bingol University, Faculty of Economics and Administrative Sciences, vol. 6(2), pages 39-57, December.
    25. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    26. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    27. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    28. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.
    29. Sebastián Lozano & Ester Gutiérrez, 2014. "A slacks-based network DEA efficiency analysis of European airlines," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(7), pages 623-637, October.
    30. Atems, Bebonchu & Yimga, Jules, 2021. "Quantifying the impact of the COVID-19 pandemic on US airline stock prices," Journal of Air Transport Management, Elsevier, vol. 97(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanrıverdi, Gökhan & Merkert, Rico & Karamaşa, Çağlar & Asker, Veysi, 2023. "Using multi-criteria performance measurement models to evaluate the financial, operational and environmental sustainability of airlines," Journal of Air Transport Management, Elsevier, vol. 112(C).
    2. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    3. Chen, Zhongfei & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2018. "Convergence in the Chinese airline industry: A Malmquist productivity analysis," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 77-86.
    4. Barak, Sasan & Dahooei, Jalil Heidary, 2018. "A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 134-149.
    5. Kaya, Gizem & Aydın, Umut & Ülengin, Burç & Karadayı, Melis Almula & Ülengin, Füsun, 2023. "How do airlines survive? An integrated efficiency analysis on the survival of airlines," Journal of Air Transport Management, Elsevier, vol. 107(C).
    6. Liu, Dan & Zhang, Jiahuang & Yu, Ming-Miin, 2023. "Decomposing airline profit inefficiency in NDEA through the non-competitive Nerlovian profit inefficiency model," Journal of Air Transport Management, Elsevier, vol. 107(C).
    7. Aydın, Umut & Karadayi, Melis Almula & Ülengin, Füsun, 2020. "How efficient airways act as role models and in what dimensions? A superefficiency DEA model enhanced by social network analysis," Journal of Air Transport Management, Elsevier, vol. 82(C).
    8. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    9. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    10. Yu, Ming-Miin & Nguyen, Minh-Anh Thi, 2023. "Productivity changes of Asia-Pacific airlines: A Malmquist productivity index approach for a two-stage dynamic system," Omega, Elsevier, vol. 115(C).
    11. Nguyen, Minh-Anh Thi & Yu, Ming-Miin & Lirn, Taih-Cherng, 2022. "Revenue efficiency across airline business models: A bootstrap non-convex meta-frontier approach," Transport Policy, Elsevier, vol. 117(C), pages 108-117.
    12. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    13. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    14. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    15. Li, Ye & Cui, Qiang, 2018. "Airline efficiency with optimal employee allocation: An Input-shared Network Range Adjusted Measure," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 150-162.
    16. Veysi ASKER & Temel Caner USTAÖMER, 2022. "Financial Efficiency Analysis the Malmquist TFP Method An Application on Star Alliance Member Airlines," Bingol University Journal of Economics and Administrative Sciences, Bingol University, Faculty of Economics and Administrative Sciences, vol. 6(2), pages 39-57, December.
    17. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.
    18. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    19. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    20. Yu, Ming-Miin & Rakshit, Ipsita, 2024. "How to establish input and output targets for airlines with heterogeneous production technologies: A nash bargaining DEA approach within the meta-frontier framework," Journal of Air Transport Management, Elsevier, vol. 116(C).

    More about this item

    Keywords

    COVID-19 pandemic; financial performance; Merec method; Cobra method;
    All these keywords.

    JEL classification:

    • F30 - International Economics - - International Finance - - - General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation
    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:gosnar:y:2024:i:2:p:35-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Grzegorz Konat (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.