IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v115y2023ics0305048322001815.html
   My bibliography  Save this article

Productivity changes of Asia-Pacific airlines: A Malmquist productivity index approach for a two-stage dynamic system

Author

Listed:
  • Yu, Ming-Miin
  • Nguyen, Minh-Anh Thi

Abstract

To track and explain the productivity changes of Asia-Pacific airlines during their boom times, this study develops a Malmquist productivity index for a two-stage dynamic production system. Our proposed index derives a direct relationship between the productivity changes of the airline's system and its stages while capturing the system's dynamism throughout the period. Furthermore, it demonstrates the connection between changes in the technology and efficiency of the system and stages. The empirical results indicate a great diversity in the efficiency levels and productivity changes of the airlines. In general, most airlines showed constant improvement in their productivity over time, which was supported by either technology innovation or the ability to adapt to the changing technologies. During the period, low utilization of resources appeared to be a more prominent cause for the inefficiency in the airlines’ system. The airlines, however, gradually and deliberately addressed this issue. Based on these findings, some implications are proposed to promote the productivity growth of airlines in Asia-Pacific.

Suggested Citation

  • Yu, Ming-Miin & Nguyen, Minh-Anh Thi, 2023. "Productivity changes of Asia-Pacific airlines: A Malmquist productivity index approach for a two-stage dynamic system," Omega, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:jomega:v:115:y:2023:i:c:s0305048322001815
    DOI: 10.1016/j.omega.2022.102774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322001815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    2. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
    3. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    4. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    5. Choi, Kanghwa, 2017. "Multi-period efficiency and productivity changes in US domestic airlines," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 18-25.
    6. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    7. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-1039, December.
    8. Chen, Zhongfei & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2018. "Convergence in the Chinese airline industry: A Malmquist productivity analysis," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 77-86.
    9. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    10. Epure, Mircea & Kerstens, Kristiaan & Prior, Diego, 2011. "Bank productivity and performance groups: A decomposition approach based upon the Luenberger productivity indicator," European Journal of Operational Research, Elsevier, vol. 211(3), pages 630-641, June.
    11. Sahoo, Biresh & Singh, Ramadhar & Mishra, Bineet & Sankaran, Krithiga, 2015. "Research Productivity in Management Schools of India: A Directional Benefit-of-Doubt Model Analysis," MPRA Paper 67046, University Library of Munich, Germany.
    12. Zhang, Anming & Zhang, Yahua, 2021. "Is it time for an integrated aviation market in Northeast Asia? An airline performance perspective," Transport Policy, Elsevier, vol. 110(C), pages 161-169.
    13. Pooja Bansal & Aparna Mehra & Sunil Kumar, 2022. "Dynamic Metafrontier Malmquist–Luenberger Productivity Index in Network DEA: An Application to Banking Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 297-324, January.
    14. A. Emrouznejad, 2003. "An alternative DEA measure: a case of OECD countries," Applied Economics Letters, Taylor & Francis Journals, vol. 10(12), pages 779-782.
    15. Oum, Tae Hoon & Fu, Xiaowen & Yu, Chunyan, 2005. "New evidences on airline efficiency and yields: a comparative analysis of major North American air carriers and its implications," Transport Policy, Elsevier, vol. 12(2), pages 153-164, March.
    16. Kao, Chiang & Hwang, Shiuh-Nan, 2014. "Multi-period efficiency and Malmquist productivity index in two-stage production systems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 512-521.
    17. Zhao, Yu & Morita, Hiroshi & Maruyama, Yukihiro, 2019. "The measurement of productive performance with consideration for allocative efficiency," Omega, Elsevier, vol. 89(C), pages 21-39.
    18. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
    19. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    20. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    21. Chunyan Yu, 2016. "Airline Productivity and Efficiency: Concept, Measurement, and Applications," Advances in Airline Economics, in: Airline Efficiency, volume 5, pages 11-53, Emerald Group Publishing Limited.
    22. Mohsen Afsharian & Heinz Ahn, 2015. "The overall Malmquist index: a new approach for measuring productivity changes over time," Annals of Operations Research, Springer, vol. 226(1), pages 1-27, March.
    23. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    24. Lim, Sungmook & Zhu, Joe, 2019. "Primal-dual correspondence and frontier projections in two-stage network DEA models," Omega, Elsevier, vol. 83(C), pages 236-248.
    25. Eduardo Tola Losa & Amir Arjomandi & K. Hervé Dakpo & Jason Bloomfield, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach [Comparaison de l'efficacité des groupes de compagnies aériennes dans les pays de l'Anne," Post-Print hal-03151906, HAL.
    26. Pankaj Dutta & Bharath Jaikumar & Manpreet Singh Arora, 2022. "Applications of data envelopment analysis in supplier selection between 2000 and 2020: a literature review," Annals of Operations Research, Springer, vol. 315(2), pages 1399-1454, August.
    27. Kao, Chiang, 2017. "Measurement and decomposition of the Malmquist productivity index for parallel production systems," Omega, Elsevier, vol. 67(C), pages 54-59.
    28. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    29. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    30. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    31. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    32. E. Grifell-Tatjé & C. Lovell & J. Pastor, 1998. "A Quasi-Malmquist Productivity Index," Journal of Productivity Analysis, Springer, vol. 10(1), pages 7-20, July.
    33. Lu, Wen-Min & Wang, Wei-Kang & Hung, Shiu-Wan & Lu, En-Tzu, 2012. "The effects of corporate governance on airline performance: Production and marketing efficiency perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 529-544.
    34. Kao, Chiang, 2018. "A classification of slacks-based efficiency measures in network data envelopment analysis with an analysis of the properties possessed," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1109-1121.
    35. Douglas W. Caves & Laurits R. Christensen & Michael W. Tretheway, 1984. "Economies of Density versus Economies of Scale: Why Trunk and Local Service Airline Costs Differ," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 471-489, Winter.
    36. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    37. Hirofumi Fukuyama & William L. Weber, 2017. "Measuring bank performance with a dynamic network Luenberger indicator," Annals of Operations Research, Springer, vol. 250(1), pages 85-104, March.
    38. Sahoo, Biresh K. & Singh, Ramadhar & Mishra, Bineet & Sankaran, Krithiga, 2017. "Research productivity in management schools of India during 1968-2015: A directional benefit-of-doubt model analysis," Omega, Elsevier, vol. 66(PA), pages 118-139.
    39. Necmi Avkiran & Kaoru Tone & Miki Tsutsui, 2008. "Bridging radial and non-radial measures of efficiency in DEA," Annals of Operations Research, Springer, vol. 164(1), pages 127-138, November.
    40. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    41. Kuljanin, Jovana & Kalić, Milica & Caggiani, Leonardo & Ottomanelli, Michele, 2019. "A comparative efficiency and productivity analysis: Implication to airlines located in Central and South-East Europe," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 152-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Ming-Miin & Rakshit, Ipsita, 2024. "How to establish input and output targets for airlines with heterogeneous production technologies: A nash bargaining DEA approach within the meta-frontier framework," Journal of Air Transport Management, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ming-Miin & Chen, Li-Hsueh, 2023. "Productivity change of airlines: A global total factor productivity index with network structure," Journal of Air Transport Management, Elsevier, vol. 109(C).
    2. Liu, Dan & Zhang, Jiahuang & Yu, Ming-Miin, 2023. "Decomposing airline profit inefficiency in NDEA through the non-competitive Nerlovian profit inefficiency model," Journal of Air Transport Management, Elsevier, vol. 107(C).
    3. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
    4. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    5. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    6. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    7. Carol C. Huang & Chris C. Hsu & Emilio Collar, 2021. "An Evaluation of the Operational Performance and Profitability of the U.S. Airlines," International Journal of Global Business and Competitiveness, Springer, vol. 16(2), pages 73-85, December.
    8. Nguyen, Minh-Anh Thi & Yu, Ming-Miin & Lirn, Taih-Cherng, 2022. "Revenue efficiency across airline business models: A bootstrap non-convex meta-frontier approach," Transport Policy, Elsevier, vol. 117(C), pages 108-117.
    9. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    10. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    11. Yu, Hang & Zhang, Yahua & Zhang, Anming & Wang, Kun & Cui, Qiang, 2019. "A comparative study of airline efficiency in China and India: A dynamic network DEA approach," Research in Transportation Economics, Elsevier, vol. 76(C).
    12. See, Kok Fong & Rashid, Azwan Abdul & Yu, Ming-Miin, 2024. "Measuring the network capacity utilization, energy consumption and environmental inefficiency of global airlines," Energy Economics, Elsevier, vol. 132(C).
    13. Khoshroo, Alireza & Izadikhah, Mohammad & Emrouznejad, Ali, 2022. "Total factor energy productivity considering undesirable pollutant outputs: A new double frontier based malmquist productivity index," Energy, Elsevier, vol. 258(C).
    14. Ruiyue Lin & Zhiping Chen & Qianhui Hu & Zongxin Li, 2017. "Dynamic network DEA approach with diversification to multi-period performance evaluation of funds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 821-860, July.
    15. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    16. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    17. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
    18. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    19. Veysi Asker, 2024. "Financial Performance Analysis Using the Merec-Based Cobra Method: An Application to Traditional and Low-Cost Airlines," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 35-52.
    20. Qian Long Kweh & Wen-Min Lu & Fengyi Lin & Yung-Jr Deng, 2022. "Impact of research and development tax credits on the innovation and operational efficiencies of Internet of things companies in Taiwan," Annals of Operations Research, Springer, vol. 315(2), pages 1217-1241, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:115:y:2023:i:c:s0305048322001815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.