IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v9y2019i2p163-180.html
   My bibliography  Save this article

Modelado de rendimientos de índices bursátiles mediante movimiento fraccional browniano combinado con procesos de saltos y modulado por cadenas de Markov / Modeling Returns of Stock Indexes through Fractional Brownian Motion Combined with Jump Processes and Modulated by Markov Chains

Author

Listed:
  • Carpinteyro, Martha

    (Escuela Superior de Economía, Instituto Politécnico Nacional)

  • Venegas Martínez, Francisco

    (Escuela Superior de Economía, Instituto Politécnico Nacional)

  • Martínez García, Miguel Ángel

    (Escuela Superior de Economía, Instituto Politécnico Nacional)

Abstract

Esta investigación tiene como propósito extender el modelo de Durham y Park (2012) al incorporar la conducta fraccional del mercado. La extensión examina la dinámica estocástica de los índices bursátiles de economías desarrolladas como en EUA, Eurozona, Reino Unido y Japón, así como los mercados emergentes de China, Brasil y México durante 1994-2017. Nuestro modelo supone que los rendimientos son conducidos por movimientos brownianos fraccionales, combinados con procesos de Poisson y modulados por cadenas de Markov. Se incorporaron factores de riesgo como: volatilidad idiosincrática, volatilidad del mercado y volatilidad de la volatilidad. Para ello, se estimaron los modelos Jump-GARCH y de cambio de régimen Markoviano, se calcularon los coeficientes de Hurst y se analizó el comportamiento de los saltos en periodos de crisis. Se encontró que el modelo propuesto describe adecuadamente la dinámica estocástica de los rendimientos de los índices bursátiles estudiados. Los principales hallazgos empíricos son que el mercado de valores de EUA, se mantiene en alta volatilidad la mayor parte del tiempo, que el mercado de valores de Brasil tiene la mayor intensidad de saltos, que el rendimiento medio más alto lo presenta el IPC y el más bajo el índice Nikkei durante el período de estudio. / This paper’s aim is to extend the Durham and Park’s (2012) model by incorporating the market fractional behavior. The extension examines the stochastic dynamics of stock indexes for several of the world´s main economies (US, Eurozone, UK and Japan), as well as emerging markets (China, Brazil and Mexico) during 1994-2017. The proposed model assumes that the returns are driven by fractional Brownian motions combined with Poisson processes and modulated by Markov chains. Risk factors such as: idiosyncratic volatility, market volatility, volatility of volatility were incorporated. To accomplish the purpose of the extension, Jump-GARCH and Markov regime-switching models were estimated, the Hurst coefficient was calculated and jumps behaviour was analysed during crisis periods. It was considered that the model accurately describes the stochastic dynamics of the stock indexes returns. The main empirical findings are that the USA stock market remains in high volatility most of the time, that the Brazil Stock Market has the highest intensity of jumps, and that the mean return is the highest for the IPC and the lowest for Nikkei Index during the period under study.

Suggested Citation

  • Carpinteyro, Martha & Venegas Martínez, Francisco & Martínez García, Miguel Ángel, 2019. "Modelado de rendimientos de índices bursátiles mediante movimiento fraccional browniano combinado con procesos de saltos y modulado por cadenas de Markov / Modeling Returns of Stock Indexes through Fr," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 9(2), pages 163-180, julio-dic.
  • Handle: RePEc:sfr:efruam:v:9:y:2019:i:2:p:163-180
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/120/94
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, David S., 2008. "The market for crash risk," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2291-2321, July.
    2. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    3. Jamdee, Sutthisit & Los, Cornelis A., 2007. "Long memory options: LM evidence and simulations," Research in International Business and Finance, Elsevier, vol. 21(2), pages 260-280, June.
    4. Pedro Santa-Clara & Shu Yan, 2010. "Crashes, Volatility, and the Equity Premium: Lessons from S&P 500 Options," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 435-451, May.
    5. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    8. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    9. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    10. Byeong-Je An & Andrew Ang & Turan G. Bali & Nusret Cakici, 2014. "The Joint Cross Section of Stocks and Options," Journal of Finance, American Finance Association, vol. 69(5), pages 2279-2337, October.
    11. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    12. Pierre Collin‐Dufresne & Vyacheslav Fos, 2016. "Insider Trading, Stochastic Liquidity, and Equilibrium Prices," Econometrica, Econometric Society, vol. 84, pages 1441-1475, July.
    13. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    14. Martijn Cremers & Michael Halling & David Weinbaum, 2015. "Aggregate Jump and Volatility Risk in the Cross-Section of Stock Returns," Journal of Finance, American Finance Association, vol. 70(2), pages 577-614, April.
    15. Johnson, Timothy C, 2002. "Volatility, Momentum, and Time-Varying Skewness in Foreign Exchange Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 390-411, July.
    16. Huyěn Pham & Nizar Touzi, 1996. "Equilibrium State Prices In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 215-236, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carpinteyro, Martha & Venegas-Martínez, Francisco & Martínez-García, Miguel Ángel, 2018. "Modeling Returns of Stock Indexes through Fractional Brownian Motion Combined with Jump Processes and Modulated by Markov Chains," MPRA Paper 90549, University Library of Munich, Germany.
    2. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    3. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    4. Peter Christoffersen & Mathieu Fournier & Kris Jacobs, 2018. "The Factor Structure in Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 595-637.
    5. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    6. Chen, Chin-Ho, 2019. "Downside jump risk and the levels of futures-cash basis," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    7. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    8. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    9. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    10. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    11. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    12. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2018. "Crash Risk in Currency Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 137-170, February.
    13. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    14. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    15. Bingxin Li, 2020. "Option-implied filtering: evidence from the GARCH option pricing model," Review of Quantitative Finance and Accounting, Springer, vol. 54(3), pages 1037-1057, April.
    16. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    17. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    18. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    19. Dammak, Wael & Hamad, Salah Ben & de Peretti, Christian & Eleuch, Hichem, 2023. "Pricing of European currency options considering the dynamic information costs," Global Finance Journal, Elsevier, vol. 58(C).
    20. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2012. "Sources of Risk in Currency Returns," CEPR Discussion Papers 8745, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    rendimiento de índices de acciones; movimiento fraccional browniano; cambio de régimen markoviano; procesos de saltos / Stock Index Return; Fractional Brownian Motion; Markov Regime-switching; Jump Processes.;
    All these keywords.

    JEL classification:

    • N20 - Economic History - - Financial Markets and Institutions - - - General, International, or Comparative
    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:9:y:2019:i:2:p:163-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.