IDEAS home Printed from https://ideas.repec.org/a/scn/wnewec/y2018i4p20-31.html
   My bibliography  Save this article

Прогнозирование инфляции: практика использования синтетических процедур // Inflation Forecasting: The Practice of Using Synthetic Procedures

Author

Listed:
  • E. Balatskiy V.

    (Financial University)

  • M. Yurevich A.

    (Financial University)

  • Е. Балацкий В.

    (Финансовый университет)

  • М. Юревич А.

    (Финансовый университет)

Abstract

The article contains a review of inflation forecasting models, including the most popular class of models as one-factor models: random walk, direct autoregression, recursive autoregression, stochastic volatility with an unobserved component and of the integrated model of autoregression with moving average. Also, we discussed the possibilities of various modifications of models based on the Phillips curve (including the “triangle model”), vector autoregressive models (including the factor-extended model of B. Bernanke’s vector autoregression), dynamic general equilibrium models and neural networks. Further, we considered the comparative advantages of these classes of models. In particular, we revealed a new trend in inflation forecasting, which consists of the introduction of synthetic procedures for private forecasts accounting obtained by different models. An important conclusion of the study is the superiority of expert assessments in comparison with all available models. We have shown that in the conditions of a large number of alternative methods of inflation modelling, the choice of the adequate approach in specific conditions (for example, for the Russian economy of the current period) is a non-trivial procedure. Based on this conclusion, the authors substantiate the thesis that large prognostic possibilities are inherent in the mixed strategies of using different methodological approaches, when implementing different modelling tools at different stages of modelling, in particular, the multifactorial econometric model and the artificial neural network. В статье представлена общая типология моделей прогнозирования инфляции. Подробно рассмотрены однофакторные модели, включая модели случайного блуждания, прямой авторегрессии, рекурсивной авторегрессии, стохастической волатильности с ненаблюдаемой составляющей и интегрированные модели авторегрессии со скользящей средней. Помимо этого, обсуждаются возможности различных модификаций моделей на основе кривой Филлипса (включая «треугольную модель»), векторных авторегрессионных моделей (включая факторно-расширенную модель векторной авторегрессии Б. Бернанке), динамических моделей общего равновесия и нейронных сетей. Рассмотрены сравнительные преимущества указанных классов моделей, выявлен новый тренд в прогнозировании инфляции, состоящий во внедрении синтетических процедур учета частных прогнозов, полученных на основе разных типов моделей. Сделан важный вывод о превосходстве экспертных оценок по сравнению со всеми имеющимися моделями. Важным аспектом сравнения разных классов моделей является зависимость успешности их применения от таких факторов, как величина лагов для объясняющих регрессоров, величина горизонта планирования, тип экономики моделируемой страны и т. д. Авторами показано, что в условиях большого числа альтернативных способов моделирования инфляции выбор наиболее адекватного подхода в конкретных условиях (например, для российской экономики нынешнего периода времени) представляет собой нетривиальную процедуру. Опираясь на данный вывод, авторы обосновывают тезис, согласно которому большие прогностические возможности заложены в смешанных стратегиях использования разных методических подходов, когда на разных стадиях моделирования применяется разный модельный инструментарий, в частности многофакторная эконометрическая модель и искусственная нейронная сеть.

Suggested Citation

  • E. Balatskiy V. & M. Yurevich A. & Е. Балацкий В. & М. Юревич А., 2018. "Прогнозирование инфляции: практика использования синтетических процедур // Inflation Forecasting: The Practice of Using Synthetic Procedures," Мир новой экономики // The world of new economy, Финансовый университет при Правительстве Российской Федерации // Financial University under The Governtment оf The Russian Federation, vol. 12(4), pages 20-31.
  • Handle: RePEc:scn:wnewec:y:2018:i:4:p:20-31
    as

    Download full text from publisher

    File URL: https://wne.fa.ru/jour/article/viewFile/205/197.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    2. Wolters, Maik H., 2011. "Forecasting under Model Uncertainty," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48723, Verein für Socialpolitik / German Economic Association.
    3. Laurence Ball & N. Gregory Mankiw, 2002. "The NAIRU in Theory and Practice," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 115-136, Fall.
    4. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    5. Razin, Assaf & Yuen, Chi-Wa, 2002. "The 'New Keynesian' Phillips curve: closed economy versus open economy," Economics Letters, Elsevier, vol. 75(1), pages 1-9, March.
    6. Fabio Rumler, 2007. "Estimates of the Open Economy New Keynesian Phillips Curve for Euro Area Countries," Open Economies Review, Springer, vol. 18(4), pages 427-451, September.
    7. M. Ali Choudhary & Adnan Haider, 2012. "Neural network models for inflation forecasting: an appraisal," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
    8. Nariman Behravesh, 1976. "Forecasting inflation: does the method make a difference," Business Review, Federal Reserve Bank of Philadelphia, issue Sep, pages 9-17.
    9. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.
    3. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    4. Sekine, Toshitaka, 2009. "Another look at global disinflation," Journal of the Japanese and International Economies, Elsevier, vol. 23(2), pages 220-239, June.
    5. Galvão, Ana Beatriz, 2017. "Data revisions and DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 215-232.
    6. Rubaszek, Michał, 2021. "Forecasting crude oil prices with DSGE models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
    7. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    8. Bekiros, Stelios & Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2016. "Dealing with financial instability under a DSGE modeling approach with banking intermediation: A predictability analysis versus TVP-VARs," Journal of Financial Stability, Elsevier, vol. 26(C), pages 216-227.
    9. Sandra Eickmeier & Katharina Pijnenburg, 2013. "The Global Dimension of Inflation – Evidence from Factor-Augmented Phillips Curves," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 103-122, February.
    10. João Valle e Azevedo & Inês Maria Gonçalves, 2015. "Macroeconomic Forecasting Starting from Survey Nowcasts," Working Papers w201502, Banco de Portugal, Economics and Research Department.
    11. Gelain, Paolo & Iskrev, Nikolay & J. Lansing, Kevin & Mendicino, Caterina, 2019. "Inflation dynamics and adaptive expectations in an estimated DSGE model," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 258-277.
    12. Farooq Akram & Andrew Binning & Junior Maih, 2016. "Joint prediction bands for macroeconomic risk management," Working Paper 2016/7, Norges Bank.
    13. Tea Šestanović & Josip Arnerić, 2021. "Can Recurrent Neural Networks Predict Inflation in Euro Zone as Good as Professional Forecasters?," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
    14. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    15. Gern, Klaus-Jürgen & Hauber, Philipp & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina & Wolters, Maik H., 2015. "Weltkonjunktur im Herbst 2015 - Schwäche in den Schwellenländern bremst Weltkonjunktur [Weakness in emerging markets weighs on global growth]," Kieler Konjunkturberichte 9, Kiel Institute for the World Economy (IfW Kiel).
    16. Ray Fair, 2018. "Information Content of DSGE Forecasts," Papers 1808.02910, arXiv.org.
    17. Knotek, Edward S. & Zaman, Saeed, 2019. "Financial nowcasts and their usefulness in macroeconomic forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
    18. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    19. Pirschel, Inske & Wolters, Maik, 2014. "Forecasting German key macroeconomic variables using large dataset methods," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100587, Verein für Socialpolitik / German Economic Association.
    20. Alexander Mihailov & Fabio Rumler & Johann Scharler, 2011. "The Small Open-Economy New Keynesian Phillips Curve: Empirical Evidence and Implied Inflation Dynamics," Open Economies Review, Springer, vol. 22(2), pages 317-337, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:wnewec:y:2018:i:4:p:20-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://worldneweconomy.elpub.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.