IDEAS home Printed from https://ideas.repec.org/a/scn/mngsci/y2017i2p44-55.html
   My bibliography  Save this article

Нормативные значения коэффициентов финансовой устойчивости: особенности видов экономической деятельности // Normative Values of Financial Stability Ratios: Industry-Specific Features

Author

Listed:
  • E. Fedorova A.

    (Financial University)

  • M. Chukhlantseva A.

    (National Research University Higher School of Economics)

  • D. Chekrizov V.

    (“Globalstar-Space Telecommunications” Joint Stock Company)

  • ЕЛЕНА Федорова АНАТОЛЬЕВНА

    (Финансовый университет)

  • МАРИЯ Чухланцева АЛЕКСАНДРОВНА

    (Национальный исследовательский университет «Высшая школа экономики»)

  • ДМИТРИЙ Чекризов ВАСИЛЬЕВИЧ

    (Акционерное общество «Глобалстар-Космические Телекоммуникации»)

Abstract

The purpose of this study is to predict the Russian companies’ bankruptcy probability based on existing legislation. The empirical base of the study consists of the collection of financial statements of 2017 enterprises (866 of them gone bankrupt) belonging to four economic sectors: wholesale trade, construction, power generation, food production. In the course of investigation the authors have examined the consistency of current normative values of financial ratios approved by the regulatory acts of the Russian Federation, as well as proposed their redefined data based on economic and mathematic modeling. The worked out norms of financial stability allow classifying companies with sufficient accuracy as bankrupts and financially healthy companies (from 75% to 85%). The given norms have been calculated for two groups of insolvent companies: 1) formally declared bankrupts; 2) officially declared bankrupts and the companies, which are the stage of the arbitration proceedings according to creditors’ claims. The obtained results can be applied in enterprises’ crisis management decision-making. Целью данной работы является прогнозирование вероятности банкротства российских компаний на основе действующего законодательства. Эмпирическая база включает в себя 2017 компаний (из них 866 - банкроты) по четырем секторам экономики: оптовая торговля, строительство, производство электроэнергии, а также производство пищевых продуктов. В ходе исследования авторами была проверена состоятельность текущих нормативных значений финансовых коэффициентов, утвержденных нормативными актами Российской Федерации, а также предложены их уточненные значения на основе экономико-математического моделирования. Разработанные нормативы финансовой устойчивости позволяют классифицировать предприятия-банкроты и здоровые организации с точностью 75-85%. Данные нормативы рассчитаны для двух групп несостоятельных компаний: 1) официально признанные банкроты; 2) официально признанные банкроты и предприятия, которые проходят стадии арбитражного производства по исковым заявлениям кредиторов. Полученные результаты могут использоваться при принятии управленческих решений по антикризисному управлению предприятий.

Suggested Citation

  • E. Fedorova A. & M. Chukhlantseva A. & D. Chekrizov V. & ЕЛЕНА Федорова АНАТОЛЬЕВНА & МАРИЯ Чухланцева АЛЕКСАНДРОВНА & ДМИТРИЙ Чекризов ВАСИЛЬЕВИЧ, 2017. "Нормативные значения коэффициентов финансовой устойчивости: особенности видов экономической деятельности // Normative Values of Financial Stability Ratios: Industry-Specific Features," Управленческие науки // Management Science, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 7(2), pages 44-55.
  • Handle: RePEc:scn:mngsci:y:2017:i:2:p:44-55
    as

    Download full text from publisher

    File URL: https://managementscience.fa.ru/jour/article/viewFile/105/106.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    5. Keasey, Kevin & Watson, Robert, 1989. "Consensus and accuracy in accounting studies of decision-making: A note on a new measure of consensus," Accounting, Organizations and Society, Elsevier, vol. 14(4), pages 337-345, July.
    6. Rowoldt, Maximilian & Starke, Dennis, 2016. "The role of governments in hostile takeovers – Evidence from regulation, anti-takeover provisions and government interventions," International Review of Law and Economics, Elsevier, vol. 47(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    2. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    3. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    4. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    5. Jie Sun & Jie Li & Hamido Fujita & Wenguo Ai, 2023. "Multiclass financial distress prediction based on one‐versus‐one decomposition integrated with improved decision‐directed acyclic graph," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1167-1186, August.
    6. Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
    7. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    8. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    9. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    10. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    11. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    12. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    13. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    14. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    15. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    16. Shoukat Ali & Ramiz ur Rehman & Wang Yuan & Muhammad Ishfaq Ahmad & Rizwan Ali, 2022. "Does foreign institutional ownership mediate the nexus between board diversity and the risk of financial distress? A case of an emerging economy of China," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 553-581, September.
    17. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    18. Hamid Waqas & Rohani Md-Rus, 2018. "Predicting financial distress: Applicability of O-score model for Pakistani firms," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(2), pages 389-401, April.
    19. Edith Navarrete Marneou & Edgar Sansores Guerrero, 2011. "Quintano Roo Mexico Micro, Small And Medium Sized Business Failure: An Multi Variable Analysis, El Fracaso De Las Micro, Pequenas Y Medianas Empresas En Quintana Roo, Mexico: Un Analisis Multivariante," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 4(3), pages 21-33.
    20. Tharwah Shaalan, 2018. "Classification of Lending Risks and Interpretation of Operational Efficiency in Islamic Banks Registered on the Bahrain Stock Exchange," International Journal of Economics and Financial Issues, Econjournals, vol. 8(6), pages 151-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:mngsci:y:2017:i:2:p:44-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://managementscience.elpub.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.